Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Netzhautschäden: Dresdner Wissenschaftler identifizieren neue Quelle für Sauerstoffradikale

18.09.2013
Forscher des Instituts für Anatomie der Medizinischen Fakultät Carl Gustav Carus, TU Dresden, entdeckten weitere Ursachen für oxidativen Stress in der Netzhaut.

Oxidativer Stress gilt als ein wichtiger Faktor bei der Entstehung von degenerativen Erkrankungen der Netzhaut einschließlich altersbedingter Makuladegeneration (AMD), bei der Sehzellen in der Netzhautmitte, die scharfes und farbiges Sehen vermitteln, zugrunde gehen.

Als oxidativer Stress wird ein Ungleichgewicht bestimmter Stoffwechselprozesse innerhalb der Zellen, das deren normale Reparatur- und Entgiftungsfunktion überfordert und folglich zu einer Schädigung aller zellulären und extrazellulären Makromoleküle führt, bezeichnet.

Die Wissenschaftler wiesen nach, dass die äußeren Segmente der Photorezeptoren unter Einwirkung blauen Lichts als Stressfaktor massive Mengen von reaktiven Sauerstoffspezies (ROS) erzeugen - mehr als die Mitochondrien als die „Kraftwerke“ der Zellen des inneren Segments, die bisher als Hauptquelle für Sauerstoffradikale und damit für oxidativen Stress angesehen wurden. Ein weiteres wichtiges Ergebnis der Studie ist die Bestätigung der Mitochondrien-ähnlichen Aktivität in den äußeren Segmenten über spezielle Farbstoffe, die in der Regel ausschließlich den funktionalen Zustand der mitochondrialen Membranen zeigen. Ihre Erkenntnisse stellen die Dresdner Forscher in der aktuellen Ausgabe des angesehenen Fachblatts „PLOS ONE“ vor.

Die Wissenschaftler um Dr. Cora Röhlecke und Prof. Richard Funk vom Institut für Anatomie der TU Dresden sind schon länger auf der Suche nach den Anfängen bestimmter Schädigungsmechanismen der Netzhaut. Neben genetischen Ursachen sind die Menge an Licht, die Ernährung, Rauchen und einige weitere Erkrankungen als Gründe für die Abnahme der Sehfähigkeit bekannt. Im Vergleich zu anderen Geweben ist die Netzhaut besonders anfällig für die Bildung von reaktiven Sauerstoffspezies (ROS) auf Grund des sehr hohen Sauerstoffgehalts in der Aderhaut, der außerordentlich hohen Stoffwechselrate und der Exposition gegenüber Licht, insbesondere Lichts kürzerer Wellenlängen.

Innerhalb der Zellen sind die Mitochondrien besonders empfindlich gegenüber oxidativem Stress, was an den elektrischen Ladungen liegt, die im Zuge der Atmungskette entstehen. Durch blaues Licht entweichen noch mehr Elektronen aus der Atmungskette in den Mitochondrien, was zu weiteren Schäden führt.

In dieser Studie haben die Dresdner Forscher die Anwendung von blauem Licht als physiologischen Stressfaktor genutzt. Ziel war es, die wichtigsten Quellen der intrazellulären Sauerstoffradikale zu identifizieren. Interessanterweise zeigte sich in den äußeren Segmenten der Photorezeptoren eine Mitochondrien-ähnliche Aktivität, die über spezielle Farbstoffe, die in der Regel ausschließlich den funktionalen Zustand der mitochondrialen Membranen zeigen, sichtbar gemacht werden konnte.

Wie in Mitochondrien zeigen diese Farbstoffe eine Abnahme des Membranpotentials im Fall von Sauerstoffmangel oder Zellstress-Situationen. Die vorliegende Studie zeigt nach Einstrahlung blauen Lichts das Entstehen von Sauerstoffradikalen und oxidativem Stress, direkt in den äußeren Segmenten der Photorezeptoren. Diese Bereiche sind somit von Anfang an auch ursächlich in die Schädigungsmechanismen der Netzhaut eingebunden.

Nachweis
Roehlecke C, Schumann U, Ader M, Brunssen C, Bramke S, et al. (2013) Stress Reaction in Outer Segments of Photoreceptors after Blue Light Irradiation. PLoS ONE 8(9): e71570. doi:10.1371/journal.pone.0071570
Kontakt
Medizinische Fakultät Carl Gustav Carus
Institut für Anatomie
Dr. Cora Röhlecke
Telefon: +49 - (0) 351 – 458 6091
E-Mail: cora.roehlecke@tu-dresden.de
Weitere Informationen:
http://tu-dresden.de/die_tu_dresden/fakultaeten/medizinische_fakultaet/inst/ana

Konrad Kästner | idw
Weitere Informationen:
http://www.tu-dresden.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen
12.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik