Nervenzellen wachsen in Reih' und Glied

Um komplexe Organe wie das Gehirn oder das Nervensystem verstehen zu können, bedarf es vereinfachter Modelle. Eine originelle Möglichkeit, Nervenzellen in einer Kultur geordnet wachsen zu lassen und daran grundlegende Mechanismen des Gedächtnisses zu erforschen, hat eine Arbeitsgruppe um die Frankfurter Hirnforscherin Erin Schuman erfolgreich entwickelt.

Die Forscher ließen zwei voneinander getrennte Populationen von Nervenzellen auf einer fotolithografisch strukturierten Platte aufwachsen. Diese Nervenzellen breiteten ihre Nervenfortsätze durch feine Mikrokanäle aus, trafen aufeinander und gingen synaptische Verbindungen ein.

Senkrecht zu den Mikrokanälen wurde ein Versorgungskanal eingebaut, der es den Forschern ermöglichte, kleinste Populationen von Synapsen mittels Substanzen oder Neurotransmittern zu beeinflussen. Die Kammern sind zugänglich für Bildgebende Verfahren, wodurch die Forscher die Dynamik der Synapsen, die Bewegung der Moleküle innerhalb der Nervenzellen sichtbar machen können.

Nervenzellen in Kultur zu untersuchen ermöglicht es, das komplexe dreidimensionale Geflecht in lebenden Organismen auf zwei Dimensionen zu reduzieren. Allerdings wachsen die Zellen auch im Labor völlig ungeordnet, was ein systematisches Studium erschwert. Nervenzellen bestehen aus einem Zellkörper, der Signale über einen langen Fortsatz (Axon) an die Nachbarzellen weiterleitet. Kürzere Fortsätze (Dendriten), nehmen die eingehenden Signale auf.

Während die Reizleitung entlang des Axons und der Dendriten auf elektrischem Weg geschieht, werden die Kontaktstellen zwischen zwei Nervenzellen, die Synapsen, durch biochemische Signale überbrückt. Zu verstehen, wie Synapsen sich bilden und welche Neurotransmitter dabei eine Rolle spielen, ist nicht nur für die Hirnforschung interessant, sondern kann auch der Entwicklung neuer pharmazeutischer Wirkstoffe dienen.

Nachdem sie gezeigt hatten, dass sich in den etwa 150 Kanälen auf der Platte funktionsfähige Synapsen bilden, entwickelten die Hirnforscher die Anordnung weiter, um die Synapsen gezielt stimulieren zu können. Dabei nutzten sie aus, dass Dendriten in der Kultur eine charakteristische Länge erreichen, so dass die Kontaktstellen mit den Axonen der benachbarten Zellpopulation etwa im gleichen Abschnitt der Mikrokanäle entstehen. Dort brachte die Gruppe einen weiteren Mikrokanal an, der die interessierende Region senkrecht zu den „Nervenkanälen“ durchzieht. Durch diesen Versorgungskanal können die Synapsen direkt über gelöste Substanzen beeinflusst werden.

Eine weitere Verfeinerung der Versuchsanordnung bestand darin, das Einsickern der biochemisch wirksamen Flüssigkeit vom Versorgungskanal in die Kanäle mit den Nervenfasern einzuschränken, einzusickern. Dies erreichten Schuman und ihre Mitarbeiter, indem sie zu beiden Seiten des Hauptstroms eine Lösung einströmen ließen, die den Hauptstrom abschirmte. Die drei parallel zueinander fließenden Strömungen haben zusätzlich den Vorteil, dass man die biochemisch wirksame Substanz genau dosieren kann, indem man die Breite des mittleren Strahls variiert. Auch kann die Menge der wirksamen Substanzen zeitlich gut reguliert werden: Innerhalb einer Minute lässt sich die Zufuhr ein- und ausschalten. So ist es möglich, die Kurzsignale nachzuahmen, die die Sprache des Nervensystems sind.

Erin Schuman, die vor einigen Monaten vom renommierten California Institute of Technology (Caltech) an das Frankfurter Max-Planck-Institut für Hirnforschung wechselte, interessiert die Funktion der Synapsen im Zusammenhang mit der Gedächtnisleistung. Wie verändern sich die Synapsen um einen Gedächtniseindruck zu speichern? Welche Änderungen laufen dabei auf molekularer und zellbiologischer Ebene ab? Ihre Gruppe entdeckte vor Jahren, dass Dendriten in der Lage sind, die Proteine herzustellen, die benötigt werden, um die funktionale Kapazität von Synapsen zu verändern. Der Zellkern transkribiert die benötigte Information als Boten-RNA (mRNA), die dann an die Dendriten weitergeleitet wird. Sobald bestimmte Signale eingehen, übersetzen die Dendriten die mRNA in Proteine.

An Frankfurt reizt die gebürtige Kalifornierin nicht nur die Möglichkeit, gemeinsam mit ihrem Mann, dem Hirnforscher Gilles Laurent, das Max-Planck-Institut für Hirnforschung zu leiten (der andere Direktor ist Wolf Singer). Auch die Zusammenarbeit mit Wissenschaftlern des Exzellenzclusters „Makromolekulare Komplexe“ an der Goethe-Universität, dem Schuman als „Principle Investigator“ verbunden ist, verspricht viele interessante Kooperationen, beispielsweise mit der Paul-Ehrlich-Nachwuchspreisträgerin Amparo Acker-Palmer oder dem Heisenberg-Professor Alexander Gottschalk. Was das neue Gebäude des MPI für Hirnforschung betrifft, so hat die Mutter zweier Töchter im Alter von zehn und sieben Jahren schon einen Plan: „Viele Mitarbeiter am Institut haben Kinder, die über ihre Eltern schon früh mit Wissenschaft in Kontakt kommen. Wir möchten das neue Institut ebenfalls familienfreundlich gestalten. Wir würden gerne Wissenschafts-Samstage einrichten, damit unsere Kinder erfahren, wie aufregend es ist, selbst etwas zu erkunden.“

Publikation:
Anne M Taylor, Ph.D.; Daniela C Dieterich, Ph.D.; Hiroshi T Ito; Erin M Schuman; Microfluidic local perfusion chambers for the visualization and manipulation of synapses, Neuron (2010), doi:10.1016/j.neuron.2010.03.022.

Informationen: Prof. Erin Schuman, Max-Planck-Institut für Hirnforschung und Exzellenzcluster Makromolekulare Komplexe, Campus Riedberg, Tel.: (069) 506820-1022, schumane@brain.mpg.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation
Telefon (069) 798 – 2 92 28, Telefax (069) 798 – 2 85 30,
E-Mail hardy@pvw.uni-frankfurt.de

Media Contact

Dr. Anne Hardy idw

Weitere Informationen:

http://www.uni-frankfurt.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Uranimmobilisierende Bakterien im Tongestein

Mikrobielle Reduktion verringert Mobilität von Uranverbindungen. Bei der Konzeption von Endlagern für hochradioaktive Abfälle in tiefen geologischen Schichten müssen verschiedene Faktoren sorgfältig berücksichtigt werden, um ihre langfristige Sicherheit zu gewährleisten….

Erstmals 6G-Mobilfunk in Alpen getestet

Forschende der Universität Stuttgart erzielen leistungsstärkste Verbindung. Notrufe selbst in entlegenen Gegenden absetzen und dabei hohe Datenmengen in Echtzeit übertragen? Das soll möglich werden mit der sechsten Mobilfunkgeneration – kurz…

Neues Sensornetzwerk registriert ungewöhnliches Schwarmbeben im Vogtland

Das soeben fertig installierte Überwachungsnetz aus seismischen Sensoren in Bohrlöchern zeichnete Tausende Erdbebensignale auf – ein einzigartiger Datensatz zur Erforschung der Ursache von Schwarmbeben. Seit dem 20. März registriert ein…

Partner & Förderer