Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Nervenzellen der Sprit ausgeht - Parkinson-Gene sichern die neuronale Energieversorgung

21.08.2009
Bei einer Parkinson-Erkrankung sterben Neuronen im Mittelhirn ab. Welche Mechanismen hier zugrunde liegen, ist noch weitgehend unklar.

Bekannt ist aber, dass etwa jeder zehnte Krankheitsfall auf Defekte in sogenannten Parkinson-Genen zurückzuführen ist. Außerdem scheinen Mitochondrien, die Kraftwerke der Zellen, eine wichtige Rolle zu spielen.

Ein Forscherteam um PD Dr. Konstanze Winklhofer und Professor Christian Haass legt nun Ergebnisse vor, die diese beiden Beobachtungen zusammenführen. Demnach sichern zwei Parkinson-Gene die Funktion der Mitochondrien in den Nervenzellen.

"Für uns Forscher ist es sehr hilfreich, wenn Erkrankungen durch Fehlfunktion bestimmter Gene ausgelöst werden können, so wie es bei der Parkinson-Erkrankung der Fall ist", sagt Winklhofer. "Wenn wir die genaue Funktionsweise dieser Gene entschlüsseln, können wir viel über die Ursachen und den Verlauf des Leidens lernen wie auch über mögliche therapeutische Ansätze." Ebenfalls beteiligt an der Untersuchung war die Arbeitsgruppe von Professor Dr. Wolfgang Wurst vom Institut für Entwicklungsgenetik am Helmholtz Zentrum München. (Journal of Biological Chemistry, 21. August 2009)

Allein in Deutschland leiden zurzeit mindestens 250.000 Menschen an der Parkinson-Erkrankung. Die betroffenen Patienten zittern unkontrolliert und können sich nur langsam oder kaum mehr bewegen, während ihre Muskeln versteifen. Die Ursache ist der Untergang von Nervenzellen in der Substantia nigra, einem Bereich des Mittelhirns, der Dopamin als Botenstoff produziert. Dieser Botenstoff überträgt Informationen in den Kontrollzentren für Bewegungsabläufe. Ein Mangel an Dopamin hat somit eine Bewegungsstörung zur Folge.

"Funktionsgestörte Mitochondrien werden schon seit den 80er-Jahren als mögliche Verursacher der Parkinson-Erkrankung vermutet", sagt Privatdozentin Dr. Konstanze Winklhofer am Lehrstuhl für Stoffwechselbiochemie an der Ludwig-Maximilians-Universität (LMU) München. Damals entdeckte man, dass Stoffe, die für Mitochondrien giftig sind, eine Parkinson-Erkrankung auslösen können. Eine Beteiligung dieser wichtigen Zellbestandteile am Untergang der Neuronen wäre leicht zu erklären: Mitochondrien versorgen die Zelle mit Energie und spielen eine wichtige Rolle bei der Regulation des Zelltods. Die aktuellen Ergebnisse bestätigen den Zusammenhang nun auf genetischer Ebene.

Demnach sind die beiden Parkinson-Gene PINK1 und Parkin gemeinsam für das Funktionieren der Mitochondrien verantwortlich. Wenn Parkin oder PINK 1 ihre Funktion verlieren, sind die Form und die Aktivität der Mitochondrien gestört. In Folge davon produzieren die zellulären Energielieferanten weniger Adenosintriphosphat, also Kraftstoff für die Zellen. In vorangegangenen Arbeiten konnte das Team um Winklhofer bereits zeigen, dass Parkin eine wichtige Schutzfunktion für Neuronen erfüllt. "Das haben wir nun bestätigt", berichtet die Biochemikerin. "Denn während Parkin einen Funktionsverlust von PINK1 kompensieren kann, geht das umgekehrt nicht."

Bis heute gibt es kein Medikament, das ein Fortschreiten der Parkinson-Erkrankung verhindern kann. Die Therapien beschränken sich bislang darauf, dem Gehirn genügend Dopamin zur Verfügung zu stellen, ohne aber ursächlich einzugreifen. Die Forscher hoffen nun darauf, dass die Parkinson-Gene neue Ansatzpunkte für andere Formen der Behandlung oder Prävention liefern, auch bei Fällen, die nicht genetisch bedingt sind. Bis jetzt sind sechs Parkinson-Gene bekannt. Deren Funktionsweise muss aber noch im Detail entschlüsselt werden - wofür die aktuellen Ergebnisse einen ersten Schritt geleistet haben. (CR/suwe)

Publikation:
"Loss of parkin or PINK1 function increases DRP1-independent mitochondrial fragmentation"
Lutz, A.K., Exner, N., Fett, M.E., Schlehe, J.S., Kloos, K., Laemmermann, K., Brunner, B., Kurz-Drechsler, A., Vogel, F., Reichert, A.S., Bouman, L., Vogt-Weisenhorn, D., Wurst, W., Tatzelt, J., Haass, C., and Winklhofer, K.F.

Journal of Biological Chemistry, 21. August 2009, Bd. 284, Ausgabe 34, S. 22938-22951

Ansprechpartner:
PD Dr. Konstanze F. Winklhofer, M.D., Ph.D.
Adolf-Butenandt-Institut, Lehrstuhl für Stoffwechselbiochemie der LMU
Tel.: 089 / 2180 - 75483
Fax: 089 / 2180 - 75415
E-Mail: konstanze.winklhofer@med.uni-muenchen.de
Web: www.biochemie.abi.med.uni-muenchen.de/research/nbc/index.html

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de
http://www.biochemie.abi.med.uni-muenchen.de/research/nbc/index.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie