Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervenzellen rechnen mit Hilfe von Erwartungen

01.03.2016

Unsere visuelle Umwelt ist unglaublich komplex: Auf kleinstem Raum finden sich unzählige Farben, Strukturen und Kontraste. Trotzdem können wir Objekte und Bewegungen zielsicher erkennen. Doch auch das Fruchtfliegenhirn, das nur einen Bruchteil unserer Nervenzellen besitzt, schafft diese Unterscheidungen.

Forscher am Max-Planck-Institut für Neurobiologie in Martinsried haben nun Hinweise darauf gefunden, dass sich der visuelle Bewegungssinn der Fruchtfliege im Laufe von Jahrmillionen optimal an die Eigenschaften der Umwelt angepasst hat. Das ungleiche Verhältnis zwischen hellen und dunklen Bereichen in der Natur spiegelt sich in einer ähnlich asymmetrischen Verarbeitung im Fliegenhirn wider.


T4-Zellen im Fliegenhirn werden vor allem dann aktiv, wenn die Augen eine sich langsam bewegende helle Kante wahrnehmen.

MPI für Neurobiologie / Ammer


Untersuchungen in einer virtuellen Umgebung zeigen, wie erwartete Eigenschaften einer komplexen Umwelt in Nervenzellberechnungen einfließen.

MPI für Neurobiologie / Prech & Leonhardt

Ohne dass wir uns dessen bewusst sind, löst unser Sehsystem in jeder Sekunde ungemein schwierige Aufgaben. Um beispielsweise nach einem Stift zu greifen, muss dessen Form und Textur rasch und präzise von dutzenden anderen, zum Teil sehr ähnlichen Objekten in der Umgebung unterschieden werden.

Das funktioniert unter verschiedensten Lichtbedingungen und auch vor fast beliebigen Hintergründen. Um die Verarbeitung zu erleichtern, bezieht das Sehsystem Erwartungen an typische Eigenschaften der Umgebung in seine Berechnungen mit ein. Wie diese Erwartungen in die Nervenzellberechnung einfließen, untersucht Alexander Borst und sein Team am Max-Planck-Institut für Neurobiologie an der Fruchtfliege Drosophila.

Kurskorrektur in virtueller Umgebung

Für ihre Untersuchungen nutzen die Forscher ein angeborenes Verhalten der Fliegen. Mit Hilfe der sogenannten optomotorischen Reaktion können die Tieren stabil auf Kurs bleiben: Wird eine Fliege zum Beispiel durch eine Windböe nach links von ihrem Kurs abgebracht, rotiert aus ihrer Sicht die gesamte Welt nach rechts. Um wieder auf Kurs zu kommen, dreht sich das Tier daher zuverlässig in dieselbe Richtung wie die wahrgenommene Bildbewegung, in diesem Fall also nach rechts.

Um die Grundlagen dieser Kurskorrektur zu untersuchen, haben die Forscher eine virtuelle Umgebung für die Tiere gebaut. Drei Monitore gaukeln der Fliege vor, dass sie durch verschiedene natürliche Umgebungen navigiert, während Sensoren ihre Bewegungen auf einem luftgepolsterten Styropor-Ball verfolgen.

“Für die Panorama-Bilder, die wir für diese Experimente benutzt haben, bin ich mit meinem Smartphone tagelang durch die Wälder um das Institut gekrochen”, berichtet Aljoscha Leonhardt, einer der Erstautoren der Studie. Hin und wieder simulierten die Forscher dann eine virtuelle Böe — die Umgebung auf den Monitoren dreht sich kurzzeitig nach links oder rechts. Wie in der Natur gleicht Drosophila diesen optischen Drift gekonnt aus: Im Bruchteil einer Sekunde läuft das Insekt wieder gerade durch die virtuelle Welt.

Im nächsten Schritt unterdrückten die Forscher mithilfe eines genetischen Tricks die Aktivität derjenigen Nervenzellen, welche im Fliegengehirn die Bewegungsrichtung berechnen und diese letztendlich in eine Drehung umsetzen. Ähnlich wie bei Wirbeltieren passiert dies im optischen System der Fliege in zwei parallelen Kanälen: einmal für Helligkeits-Zunahmen (ON-Kanal) und einmal für Helligkeits-Abnahmen (OFF-Kanal).

Ersteres wird in sogenannten T4-Zellen erledigt, letzteres in T5-Zellen. Wurden beide Nervenzelltypen ausgeschaltet, konnten die Tiere die Bewegungen ihrer Umwelt nicht mehr sehen und ihren Kurs auch nicht mehr korrigieren. Wurde jedoch nur einer dieser Kanäle ausgeschaltet, glichen die Fliegen zur Überraschung der Neurobiologen die virtuelle Böe weiterhin schnell und effizient aus. Jeder der beiden Kanäle scheint daher optimal auf Umweltveränderungen zu reagieren.

Parallel mit Unterschieden

Die weiteren Untersuchungen zeigten jedoch deutliche Unterschiede in den beiden Kanälen. Während die T4-Zellen des ON-Kanals zum Beispiel stark auf sich langsam bewegende helle Kanten reagierten, wurden die T5-Zellen des OFF-Kanals vor allem bei schnellen, dunklen Kanten aktiv. Um zu überprüfen, ob es sich bei dieser Asymmetrie um eine Anpassung an die Natur handelt, simulierten die Forscher das Netzwerk am Computer. Sie trainierten virtuelle T4- und T5-Zellen darauf, möglichst gut die Geschwindigkeit von Bewegungen natürlicher Bilder zu schätzen. Das Ergebnis zeigte eine ganz ähnliche Asymmetrie wie die vorangegangenen physiologischen Untersuchungen.

“Wir nehmen an, dass sich die funktionellen Unterschiede zwischen T4- und T5-Zellen als Anpassung an die unterschiedliche Verteilung von Hell und Dunkel in der natürlichen visuellen Umgebung entwickelt haben”, erklärt Georg Ammer, der zweite Erstautor der Studie. Das Einbeziehen solcher Erwartungen an die natürlichen Umweltbedingungen macht die Verarbeitung robuster und effizienter. Da Menschen und Fliegen in visuell ähnlichen Umgebungen leben ist es denkbar, dass auch diese Erkenntnis über die visuelle Verarbeitung im Fliegenhirn eine Parallele im menschlichen Gehirn findet.

[AL/GA/SM]

ORIGINALVERÖFFENTLICHUNG
Aljoscha Leonhardt, Georg Ammer, Matthias Meier, Etienne Serbe, Armin Bahl und Alexander Borst
Asymmetry of Drosophila ON and OFF motion detectors enhances real-world velocity estimation
Nature Neuroscience, 29. Februar 2016

KONTAKT
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-mail: merker@neuro.mpg.de

Prof. Dr. Alexander Borst
Abteilung Schaltkreise – Information – Modelle
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3251
Email: borst@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de/borst/de - Webseite der Abteilung von Alexander Borst am Max-Planck-Institut für Neurobiologie

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden Hinweise auf verknotete Chromosomen im Erbgut
20.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Aus der Moosfabrik
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise