Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervenzellen im optischen Fluss

25.08.2010
Nervenzellen gleichen Unterschiede im optischen Input über zellinterne Verstärker aus

Tiere und Menschen können sich meist recht gut durch eine dreidimensionale Umwelt bewegen, ohne das Gleichgewicht zu verlieren oder überall anzustoßen. Neben den Gleichgewichtsorganen helfen hier vor allem die Augen. Jede Bewegung lässt die Umwelt auf charakteristische Weise an den Augen vorbeiziehen, und Nervenzellen berechnen daraus die eigene Bewegung. Wissenschaftler des Max-Planck-Instituts für Neurobiologie zeigen nun an Fliegen, wie es Nervenzellen gelingt, die Eigenbewegung vor ganz unterschiedlich komplexen Hintergründen zu berechnen. Eine Vorgabe, bei der bisher gängige Modelle zur optischen Verarbeitung versagten. (Neuron, 25. August 2010)


Bei jeder Bewegung zieht die Umwelt gegenläufig an den Augen vorbei. Nervenzellen berechnen aus diesem \"optischen Fluss\" die eigene Bewegung - egal vor welchem Hintergrund. Bild: Max-Planck-Institut für Neurobiologie

Menschen und Fliegen haben eine große Gemeinsamkeit - sie verlassen sich bei der Orientierung im Raum stark auf ihre Augen. Das funktioniert äußerst zuverlässig, obwohl sich die visuellen Eindrücke ständig verändern. Gehe ich zum Beispiel an einer weißen Wand vorbei, so sehe ich an den kleinen Unebenheiten, die entgegen meiner Laufrichtung an meinen Augen vorbeiziehen, dass ich vorwärts gehe. Laufe ich nun an einer bunt beklebten Plakatwand vorbei, so zieht ein Vielfaches an Farb- und Strukturveränderungen an meinen Augen vorbei. Obwohl die visuellen Informationen sehr unterschiedlich sind, nehme ich in beiden Fällen zuverlässig wahr, dass ich mich mit einer bestimmten Geschwindigkeit vorwärts bewege. So entpuppt sich bei genauerer Betrachtung etwas Alltägliches als beachtliche Leistung unseres Gehirns.

Um zu verstehen, wie Nervenzellen optische Informationen verarbeiten, untersuchen Neurobiologen die Gehirne von Fliegen. Der Vorteil liegt auf der Hand: Fliegen sind Meister in der Verarbeitung optischer Bewegungen und ihre Gehirne sind relativ überschaubar. So kann die Funktion jeder einzelnen Nervenzelle in einem Netzwerk untersucht werden. In Laborversuchen zeigen die Wissenschaftler den Fliegen bewegte Streifenmuster und messen die Reaktionen einzelner Nervenzellen. Auf diese Weise sind Modelle entstanden, die sehr gut beschreiben, auf welchen Reiz eine Nervenzelle reagiert und was sie an nachfolgende Zellen weitergibt. Diese Modelle versagten jedoch, wenn die vorgespielten Muster stark in ihrer Komplexität variierten.

"Die Modelle berücksichtigten nur die Eingangs-Ausgangs-Beziehung der Nervenzellen; wie die Signale innerhalb der Zelle dabei verarbeitet werden, spielte keine Rolle", erklärt Alexander Borst, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie in Martinsried die Vorgänge im Fliegenhirn untersucht. Dass die Vorgänge in der Nervenzelle jedoch sehr wohl wichtig sind, zeigt jetzt sein Doktorand Franz Weber. Gemeinsam mit Christian Machens von der Ecole Normale Superieure in Paris entwickelte er ein Modell, das sowohl die Funktion (Input/Output) als auch die biophysikalischen Eigenschaften der Zelle berücksichtigt.

Franz Weber zeigte den Fliegen bewegte Punktmuster mit verschiedener Punktdichte. Dabei fand er heraus, dass die Nervenzellen bei hoher und niedriger Punktdichte grundsätzlich gleich reagieren. Das ist erstaunlich, denn bei wenigen Punkten erhält eine Nervenzelle deutlich weniger visuelle Bewegungsinformation als bei hoher Punktdichte (Vergleich des Vorbeigehens an der weißen Wand und der Plakatwand). Offensichtlich gleichen die Zellen Unterschiede in den Eingangssignalen über einen internen Verstärker aus. Diese Signalverstärkung bezogen die Neurobiologen nun in ihre Berechnungen ein. Mit Erfolg, denn das neue Modell beschreibt sehr zuverlässig das Verhalten der Nervenzellen des Netzwerks, egal wie komplex die Welt um die Fliege - oder um uns - herum ist.

Originalveröffentlichung:

Franz Weber, Christian Machens, Alexander Borst
Spatio-temporal response properties of optic-flow processing neurons
Neuron, 25. August 2010
Weitere Informationen erhalten Sie von:
Dr. Stefanie Merker, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: +49 89 8578-3514
E-Mail: merker@neuro.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Fluss Nervenzelle Neurobiologie Plakatwand Verstärker Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunabwehr ohne Kollateralschaden
23.01.2017 | Universität Basel

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie