Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervenzellen - Die Logistik des Lernens

20.12.2013
Lernen erfordert einen stetigen Umbau von Nervenzellen. Zwei Studien ermöglichen nun neue Einsichten in die molekularen Mechanismen des Lernens.

Lernen und Erinnern sind nur möglich, weil das Gehirn fortwährend umgebaut wird. Dabei finden an den Verbindungen zweier Nervenzellen – den Synapsen – gezielte Modifikationen statt, durch die sie in ihrer Form, in ihrer Molekülzusammensetzung und in ihrer Funktion verändert werden.

Es stärkt die Verbindung zwischen zwei Nervenzellen, wenn sie häufig genutzt werden. Informationen können dann abgespeichert und abgerufen werden. Allerdings ist auch der umgekehrte Vorgang möglich: Ungenutzte Fähigkeiten können wieder verlernt werden, da die Synapsen dann so umgebaut werden, dass ihre Verbindung schwächer wird beziehungsweise ganz verloren geht.

Wie eine einzelne Synapse beim Lernen verändert wird, ohne dass andere Nervenzellen oder weitere Synapsen der gleichen Zelle beeinflusst werden, ist ein Forschungsschwerpunkt des Biochemikers Michael Kiebler, der den Lehrstuhl für Zellbiologie an der Medizinischen Fakultät der LMU inne hat.

„Inzwischen ist bekannt, dass die Veränderungen an der reiz-empfangenden Seite der Synapse stattfinden, besonders an den sogenannten Dornfortsätzen“, sagt Kiebler, „bestimmte Partikel, sogenannte neuronale RNA Granula, transportieren zu diesem Zweck Boten-RNA (mRNA) dort hin“. Die mRNA trägt die Baupläne für Proteine, die zum Umbau der Synapsen benötigt werden. Kieblers Team entwickelte eine Theorie, nach der die neuronalen Granula unablässig von Synapse zu Synapse wandern und nur dort mRNA freisetzen, wo eine Synapse lernt – so können die benötigten Proteine zielgenau am Einsatzort gebildet werden.

Trotz der Bedeutung dieser Vorgänge waren ihre molekularen Mechanismen bisher größtenteils unbekannt. Eine essentielle Komponente der neuronalen Granula sind mRNA-bindende Moleküle, zu denen unter anderem Staufen2 (Stau2) und Barentsz gehören. Mithilfe spezifischer Antikörper gelang es Kieblers Team nun im Rahmen einer internationalen Kooperation mit Giulio Superti-Furga (CeMM, Wien), neuronale Granula, die entweder Stau2 oder Barentsz enthalten, zu isolieren und näher zu charakterisieren.

Überraschende Vielfalt

Bisher wurde vermutet, dass alle neuronalen RNA Granula eine ähnliche Zusammensetzung aufweisen. Die Ergebnisse der Wissenschaftler legen einen anderen Schluss nahe: Ein Vergleich der beiden untersuchten Granula-Typen zeigte, dass sie sich in zwei Dritteln der beteiligten Proteine unterscheiden. „Dies lässt eine hohe Heterogenität und Dynamik der RNA Granula vermuten“, sagt Kiebler, „in meinen Augen macht das auch Sinn, denn so können die Granula je nach beteiligter mRNA unterschiedliche Funktionen erfüllen“. Zudem konnten die Wissenschaftler nachweisen, dass in den Granula kaum Faktoren vorhanden sind, die eine Übersetzung der mRNA in Proteine fördern - stattdessen fanden sich zahlreiche Moleküle, die diesen Prozess hemmen. Dies legt den Schluss nahe, dass der mRNA-Transport von der anschließenden Protein-Produktion entkoppelt ist.

Parallel untersuchten die Wissenschaftler in einer weiteren Studie, welche konkreten mRNAs die neuronalen Granula enthalten. „Bisher war bei Säugetieren etwa für Stau2-enthaltende Granula in Nervenzellen keine einzige mRNA bekannt – jetzt gelang es unserem Team, zahlreiche spezifische mRNAs zu identifizieren“, betont Kiebler. Weitere Versuche zeigten, dass Stau2 die mRNAs stabilisiert, sodass sie länger als Vorlage für die Proteinproduktion dienen können. Verantwortlich für die Erkennung und Stabilisierung der mRNA durch Stau2 sind spezielle Strukturen der mRNA, sogenannte Staufen-recognized Structures (SRS). „Mit dieser Erkenntnis können wir zum ersten Mal überhaupt einen molekularen Mechanismus der RNA Erkennung vorschlagen“, sagt Kiebler.

Zusammengenommen ermöglichen die beiden Studien ganz neue Einsichten in die molekularen Mechanismen des Lernens und Erinnerns. Diese Erkenntnisse wollen die Wissenschaftler in neuen Studien weiter vertiefen. „Langfristig interessiert uns besonders die Frage, wie eine aktivierte Synapse Einfluss auf die Granula nimmt und die Proteinproduktion molekular anschaltet“, erklärt Kiebler. Schon jetzt wird immer klarer, dass RNA-Bindeproteine auch in Nervenzellen essentielle Rollen spielen. Kommt es dabei zu Defekten, können neurodegenerativen Erkrankungen, aber auch neurologische Fehlfunktionen auftreten. „Offensichtlich müssen nicht nur klassische Krankheiten wie Alzheimer oder Parkinson, an denen immer RNA-Bindeproteine beteiligt sind, sondern auch kognitive Störungen oder „schlechteres“ Lernen im Alter unter diesem Aspekt betrachtet werden“, erläutert Kiebler.
(Cell Reports 2013)
göd
Publikationen:
Interactome of two diverse RNA granules links mRNA localization to translational repression in neurons
Renate Fritzsche, Daniela Karra, Keiryn L. Bennett, Foong yee Ang, Jacki E. Heraud-Farlow, Marco Tolino, Michael Doyle, Karl E. Bauer, Sabine Thomas, Melanie Planyavsky, Eric Arn, Anetta Bakosova, Kerstin Jungwirth, Alexandra Hörmann, Zsofia Palfi, Julia Sandholzer, Martina Schwarz, Paolo Macchi, Jacques Colinge, Giulio Superti-Furga and Michael A. Kiebler

Cell Reports 2013

Staufen2 regulates neuronal target RNAs
Heraud-Farlow, Jacki E.; Sharangdhar, Tejaswini; Li, Xiao, Pfeifer, Philipp; Tauber, Stefanie; Orozco, Denise, Hörmann, Alexandra; Thomas, Sabine,Bakosova, Anetta,; Farlow, Ashley R.; Edbauer, Dieter; Lipshitz, Howard D., Morris, Quaid D.; Bilban, Martin; Doyle, Michael; Kiebler, Michael A.

Cell Reports 2013

Kontakt:
Prof. Dr. Michael Kiebler
Anatomie III - Zellbiologie
Tel: (089) 2180 75 884
michael.kiebler@med.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.med.uni-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE