Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervenzellen - Die Logistik des Lernens

20.12.2013
Lernen erfordert einen stetigen Umbau von Nervenzellen. Zwei Studien ermöglichen nun neue Einsichten in die molekularen Mechanismen des Lernens.

Lernen und Erinnern sind nur möglich, weil das Gehirn fortwährend umgebaut wird. Dabei finden an den Verbindungen zweier Nervenzellen – den Synapsen – gezielte Modifikationen statt, durch die sie in ihrer Form, in ihrer Molekülzusammensetzung und in ihrer Funktion verändert werden.

Es stärkt die Verbindung zwischen zwei Nervenzellen, wenn sie häufig genutzt werden. Informationen können dann abgespeichert und abgerufen werden. Allerdings ist auch der umgekehrte Vorgang möglich: Ungenutzte Fähigkeiten können wieder verlernt werden, da die Synapsen dann so umgebaut werden, dass ihre Verbindung schwächer wird beziehungsweise ganz verloren geht.

Wie eine einzelne Synapse beim Lernen verändert wird, ohne dass andere Nervenzellen oder weitere Synapsen der gleichen Zelle beeinflusst werden, ist ein Forschungsschwerpunkt des Biochemikers Michael Kiebler, der den Lehrstuhl für Zellbiologie an der Medizinischen Fakultät der LMU inne hat.

„Inzwischen ist bekannt, dass die Veränderungen an der reiz-empfangenden Seite der Synapse stattfinden, besonders an den sogenannten Dornfortsätzen“, sagt Kiebler, „bestimmte Partikel, sogenannte neuronale RNA Granula, transportieren zu diesem Zweck Boten-RNA (mRNA) dort hin“. Die mRNA trägt die Baupläne für Proteine, die zum Umbau der Synapsen benötigt werden. Kieblers Team entwickelte eine Theorie, nach der die neuronalen Granula unablässig von Synapse zu Synapse wandern und nur dort mRNA freisetzen, wo eine Synapse lernt – so können die benötigten Proteine zielgenau am Einsatzort gebildet werden.

Trotz der Bedeutung dieser Vorgänge waren ihre molekularen Mechanismen bisher größtenteils unbekannt. Eine essentielle Komponente der neuronalen Granula sind mRNA-bindende Moleküle, zu denen unter anderem Staufen2 (Stau2) und Barentsz gehören. Mithilfe spezifischer Antikörper gelang es Kieblers Team nun im Rahmen einer internationalen Kooperation mit Giulio Superti-Furga (CeMM, Wien), neuronale Granula, die entweder Stau2 oder Barentsz enthalten, zu isolieren und näher zu charakterisieren.

Überraschende Vielfalt

Bisher wurde vermutet, dass alle neuronalen RNA Granula eine ähnliche Zusammensetzung aufweisen. Die Ergebnisse der Wissenschaftler legen einen anderen Schluss nahe: Ein Vergleich der beiden untersuchten Granula-Typen zeigte, dass sie sich in zwei Dritteln der beteiligten Proteine unterscheiden. „Dies lässt eine hohe Heterogenität und Dynamik der RNA Granula vermuten“, sagt Kiebler, „in meinen Augen macht das auch Sinn, denn so können die Granula je nach beteiligter mRNA unterschiedliche Funktionen erfüllen“. Zudem konnten die Wissenschaftler nachweisen, dass in den Granula kaum Faktoren vorhanden sind, die eine Übersetzung der mRNA in Proteine fördern - stattdessen fanden sich zahlreiche Moleküle, die diesen Prozess hemmen. Dies legt den Schluss nahe, dass der mRNA-Transport von der anschließenden Protein-Produktion entkoppelt ist.

Parallel untersuchten die Wissenschaftler in einer weiteren Studie, welche konkreten mRNAs die neuronalen Granula enthalten. „Bisher war bei Säugetieren etwa für Stau2-enthaltende Granula in Nervenzellen keine einzige mRNA bekannt – jetzt gelang es unserem Team, zahlreiche spezifische mRNAs zu identifizieren“, betont Kiebler. Weitere Versuche zeigten, dass Stau2 die mRNAs stabilisiert, sodass sie länger als Vorlage für die Proteinproduktion dienen können. Verantwortlich für die Erkennung und Stabilisierung der mRNA durch Stau2 sind spezielle Strukturen der mRNA, sogenannte Staufen-recognized Structures (SRS). „Mit dieser Erkenntnis können wir zum ersten Mal überhaupt einen molekularen Mechanismus der RNA Erkennung vorschlagen“, sagt Kiebler.

Zusammengenommen ermöglichen die beiden Studien ganz neue Einsichten in die molekularen Mechanismen des Lernens und Erinnerns. Diese Erkenntnisse wollen die Wissenschaftler in neuen Studien weiter vertiefen. „Langfristig interessiert uns besonders die Frage, wie eine aktivierte Synapse Einfluss auf die Granula nimmt und die Proteinproduktion molekular anschaltet“, erklärt Kiebler. Schon jetzt wird immer klarer, dass RNA-Bindeproteine auch in Nervenzellen essentielle Rollen spielen. Kommt es dabei zu Defekten, können neurodegenerativen Erkrankungen, aber auch neurologische Fehlfunktionen auftreten. „Offensichtlich müssen nicht nur klassische Krankheiten wie Alzheimer oder Parkinson, an denen immer RNA-Bindeproteine beteiligt sind, sondern auch kognitive Störungen oder „schlechteres“ Lernen im Alter unter diesem Aspekt betrachtet werden“, erläutert Kiebler.
(Cell Reports 2013)
göd
Publikationen:
Interactome of two diverse RNA granules links mRNA localization to translational repression in neurons
Renate Fritzsche, Daniela Karra, Keiryn L. Bennett, Foong yee Ang, Jacki E. Heraud-Farlow, Marco Tolino, Michael Doyle, Karl E. Bauer, Sabine Thomas, Melanie Planyavsky, Eric Arn, Anetta Bakosova, Kerstin Jungwirth, Alexandra Hörmann, Zsofia Palfi, Julia Sandholzer, Martina Schwarz, Paolo Macchi, Jacques Colinge, Giulio Superti-Furga and Michael A. Kiebler

Cell Reports 2013

Staufen2 regulates neuronal target RNAs
Heraud-Farlow, Jacki E.; Sharangdhar, Tejaswini; Li, Xiao, Pfeifer, Philipp; Tauber, Stefanie; Orozco, Denise, Hörmann, Alexandra; Thomas, Sabine,Bakosova, Anetta,; Farlow, Ashley R.; Edbauer, Dieter; Lipshitz, Howard D., Morris, Quaid D.; Bilban, Martin; Doyle, Michael; Kiebler, Michael A.

Cell Reports 2013

Kontakt:
Prof. Dr. Michael Kiebler
Anatomie III - Zellbiologie
Tel: (089) 2180 75 884
michael.kiebler@med.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.med.uni-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Welcher Scotch ist es?
25.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie