Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervenzellen im Schilderwald

21.10.2014

Proteasen helfen navigierenden Nervenzellen

Damit wir uns bewegen können, müssen sich Nervenzellen mit Muskel- und anderen Nervenzellen verbinden. Auf ihrem Weg werden die auswachsenden Nervenzellfortsätze von "Verbotsschildern" auf der Oberfläche anderer Zellen geleitet.


Während der Entwicklung schicken Nervenzellen (hier in blau, grün und gelb) ihre Axone zu bestimmten Beinmuskeln. Treffen die EphA4-Rezeptoren der auswachsenden Nervenzellen nicht mehr auf frei zugängliche Ephrine, finden die Fortsätze vieler Nervenzellen (violett) nicht mehr zu ihren Partnerzellen.

© MPI für Neurobiologie/ Gatto

Zellkulturstudien ließen vermuten, dass Protein-schneidende Enzyme (Proteasen) diese Schilder sofort entfernen, wenn sie von den wachsenden Fortsätzen erkannt wurden. Die "Erkennungsbindung" zwischen Zellfortsatz und Schild wird dadurch schneller getrennt und die Zellfortsätze werden schneller in die neue Richtung verwiesen.

Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried bei München und des Institut de Recherches Cliniques de Montréal zeigen nun im Tiermodell, dass Proteasen tatsächlich die Navigation von Nervenzellfortsätzen regulieren. Sie tun dies jedoch, indem sie die Zahl der vorhandenen Schilder regulieren.

Ohne Proteasen werden die Schilder verdeckt und Zellfortsätze werden fehlgeleitet. Die Ergebnisse helfen, die Vernetzung der Zellen während der Entwicklung zu verstehen und könnten auch für das Verständnis neurodegenerativer Erkrankungen wie der Amyotrophen Lateralsklerose (ALS) interessant sein.

Das menschliche Gehirn besteht aus rund 100 Milliarden Nervenzellen. Jede einzelne dieser Zellen vernetzt sich im Laufe der Embryonalentwicklung über einen langen Fortsatz, das Axon, mit anderen Zellen. Zum Teil muss ein Axon dabei weite Strecken durch den Körper navigieren, damit zum Beispiel eine Verbindung zwischen Rückenmark und Bein entsteht. Erst so wird es uns möglich, fein justierte Bewegungsabläufe auszuführen wie beispielsweise über eine Mauer zu balancieren.

Es ist somit essenziell, dass sich die richtigen Nervenzellen miteinander verbinden. Doch wie findet ein Axon seinen Weg und die entsprechenden Partnerzellen unter Milliarden anderer Zellen? "Wir kennen heute ein paar Dutzend Lenkungsmoleküle und ihre Rezeptoren, die zusammen Axonen bei der Orientierung helfen", so Rüdiger Klein, Direktor am Max-Planck-Institut für Neurobiologie. Diese wenigen Rezeptor-Lenkungsmolekül-Paare steuern jedoch sehr viele Navigationsentscheidungen. "Es muss daher Mechanismen geben, die die Effekte dieser Proteinpaare verstärken und abwandeln", überlegt Klein.

Rüdiger Klein und sein Team erforschen die Wegfindung von Nervenzellen während der Entwicklung.  Im Fokus der Wissenschaftler stehen dabei die "Verbotsschilder", die Ephrin Lenkungsmoleküle und ihre Eph-Rezeptoren. Ephrine und Eph-Rezeptoren befinden sich auf fast allen Zelloberflächen:  auf Axonen ebenso wie auf Zellen des umgebenden Gewebes. Sie helfen den wachsenden Axonen, ihren Weg und ihre Partnerzelle zu finden.

Wenn ein Axon durch den Körper wandert, dockt es immer wieder über das Ephrin/Eph-System an andere Zellen an. Dadurch werden zelluläre Prozesse in einer oder beiden Zellen ausgelöst, die schließlich zum Trennen der Verbindung und Abstoßen der Zellen voneinander führen. So wird das Axon in die richtige Richtung gelenkt. Eine gängige Theorie besagt, dass diese Zellabstoßung durch Proteasen beschleunigt wird. Proteasen sind Enzyme, die Eph-Rezeptoren oder Ephrine abschneiden, und so die Verbindung zwischen den Zellen lösen können. "Proteasen könnten so zu Veränderungen in den Lenkungsvorgängen beitragen – aber bewiesen ist das noch nicht", so Rüdiger Klein.

Nicht schneller, aber besser

Um die Wissenslücke zu schließen, untersuchten die Neurobiologen in Mäusen den Einfluss von Proteasen auf die Geschwindigkeit der Zellabstoßung, die durch EphA4-Rezeptoren und ihre Ephrine gelenkt wird. Tatsächlich schienen die Versuche in Zellkultur die Theorie zunächst zu bestätigen. "Im lebenden Organismus haben wir dagegen etwas ganz anderes gefunden", berichtet Rüdiger Klein. Anders als erwartet verlief die Zellabstoßung in Tieren, deren EphA4-Rezeptoren auf den Axonen nicht von Proteasen geschnitten werden konnten, mit unveränderter Präzision. Konnten die EphA4-Rezeptoren jedoch weder auf den Axonen noch im Zielgewebe von Proteasen geschnitten werden, dann wuchsen viele Axone in die falsche Richtung. Durch das fehlende Zerschneiden reicherten sich immer mehr funktionsfähige EphA4-Rezeptoren im umgebenden Gewebe auf den Zelloberflächen an. Diese Rezeptoren binden an die auf der gleichen Zelloberfläche vorhandenen Ephrine. So werden die Ephrine "verdeckt" – für die Eph-Rezeptoren eines heranwachsenden Axons blieben keine Verbotsschilder mehr übrig. Als Konsequenz wurde das Axon nicht mehr abgestoßen und fand nicht mehr in sein Zielgebiet.

Die Ergebnisse zeigen, dass das Spalten der Eph-Rezeptoren durch Proteasen nicht, wie erwartet, die Abstoßungsreaktion beschleunigt. Es reguliert vielmehr die Zahl funktionierender Rezeptoren und indirekt die Zahl frei zugänglicher Ephrine in den Zellen, die als Navigationshilfen dienen. Ist das Gleichgewicht gestört, werden auswachsende Axone fehlgeleitet.

Dies ist eine wichtige Erkenntnis, da EphA4-Rezeptoren essenzielle Funktionen während der Entwicklung von neuronalen Netzwerken im Gehirn und Rückenmark haben. Auch werden sie mit neurodegenerativen Erkrankungen wie der Amyotrophen Lateralsklerose (ALS) in Zusammenhang gebracht: Fehlt der EphA4-Rezeptor, bricht die Krankheit in verschiedenen Tiermodellen später aus und entwickelt sich langsamer. "Es könnte sein, dass durch die regulierende Wirkung von Proteasen die Zahl der EphA4-Rezeptoren auf ein niedriges Maß eingestellt werden wird", überlegt Rüdiger Klein. "Das könnte eine Möglichkeit sein, den Krankheitsverlauf der ALS positiv zu beeinflussen."

Ansprechpartner

Prof. Dr. Rüdiger Klein

Max-Planck-Institut für Neurobiologie, Martinsried
Telefon:+49 89 8578-3151Fax:+49 89 8578-3152
 

Dr. Stefanie Merker

Max-Planck-Institut für Neurobiologie, Martinsried
Telefon:+49 89 8578-3514

Originalpublikation

 
Graziana Gatto, Daniel Morales, Artur Kania, Rüdiger Klein
EphA4 Receptor Shedding Regulates Spinal Motor Axon Guidance

Prof. Dr. Rüdiger Klein | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8709322/nervenzellen_proteasen_ephrine

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteine entdecken, zählen, katalogisieren
28.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an
28.06.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive