Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervenzellen im Schilderwald

21.10.2014

Proteasen helfen navigierenden Nervenzellen

Damit wir uns bewegen können, müssen sich Nervenzellen mit Muskel- und anderen Nervenzellen verbinden. Auf ihrem Weg werden die auswachsenden Nervenzellfortsätze von "Verbotsschildern" auf der Oberfläche anderer Zellen geleitet.


Während der Entwicklung schicken Nervenzellen (hier in blau, grün und gelb) ihre Axone zu bestimmten Beinmuskeln. Treffen die EphA4-Rezeptoren der auswachsenden Nervenzellen nicht mehr auf frei zugängliche Ephrine, finden die Fortsätze vieler Nervenzellen (violett) nicht mehr zu ihren Partnerzellen.

© MPI für Neurobiologie/ Gatto

Zellkulturstudien ließen vermuten, dass Protein-schneidende Enzyme (Proteasen) diese Schilder sofort entfernen, wenn sie von den wachsenden Fortsätzen erkannt wurden. Die "Erkennungsbindung" zwischen Zellfortsatz und Schild wird dadurch schneller getrennt und die Zellfortsätze werden schneller in die neue Richtung verwiesen.

Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried bei München und des Institut de Recherches Cliniques de Montréal zeigen nun im Tiermodell, dass Proteasen tatsächlich die Navigation von Nervenzellfortsätzen regulieren. Sie tun dies jedoch, indem sie die Zahl der vorhandenen Schilder regulieren.

Ohne Proteasen werden die Schilder verdeckt und Zellfortsätze werden fehlgeleitet. Die Ergebnisse helfen, die Vernetzung der Zellen während der Entwicklung zu verstehen und könnten auch für das Verständnis neurodegenerativer Erkrankungen wie der Amyotrophen Lateralsklerose (ALS) interessant sein.

Das menschliche Gehirn besteht aus rund 100 Milliarden Nervenzellen. Jede einzelne dieser Zellen vernetzt sich im Laufe der Embryonalentwicklung über einen langen Fortsatz, das Axon, mit anderen Zellen. Zum Teil muss ein Axon dabei weite Strecken durch den Körper navigieren, damit zum Beispiel eine Verbindung zwischen Rückenmark und Bein entsteht. Erst so wird es uns möglich, fein justierte Bewegungsabläufe auszuführen wie beispielsweise über eine Mauer zu balancieren.

Es ist somit essenziell, dass sich die richtigen Nervenzellen miteinander verbinden. Doch wie findet ein Axon seinen Weg und die entsprechenden Partnerzellen unter Milliarden anderer Zellen? "Wir kennen heute ein paar Dutzend Lenkungsmoleküle und ihre Rezeptoren, die zusammen Axonen bei der Orientierung helfen", so Rüdiger Klein, Direktor am Max-Planck-Institut für Neurobiologie. Diese wenigen Rezeptor-Lenkungsmolekül-Paare steuern jedoch sehr viele Navigationsentscheidungen. "Es muss daher Mechanismen geben, die die Effekte dieser Proteinpaare verstärken und abwandeln", überlegt Klein.

Rüdiger Klein und sein Team erforschen die Wegfindung von Nervenzellen während der Entwicklung.  Im Fokus der Wissenschaftler stehen dabei die "Verbotsschilder", die Ephrin Lenkungsmoleküle und ihre Eph-Rezeptoren. Ephrine und Eph-Rezeptoren befinden sich auf fast allen Zelloberflächen:  auf Axonen ebenso wie auf Zellen des umgebenden Gewebes. Sie helfen den wachsenden Axonen, ihren Weg und ihre Partnerzelle zu finden.

Wenn ein Axon durch den Körper wandert, dockt es immer wieder über das Ephrin/Eph-System an andere Zellen an. Dadurch werden zelluläre Prozesse in einer oder beiden Zellen ausgelöst, die schließlich zum Trennen der Verbindung und Abstoßen der Zellen voneinander führen. So wird das Axon in die richtige Richtung gelenkt. Eine gängige Theorie besagt, dass diese Zellabstoßung durch Proteasen beschleunigt wird. Proteasen sind Enzyme, die Eph-Rezeptoren oder Ephrine abschneiden, und so die Verbindung zwischen den Zellen lösen können. "Proteasen könnten so zu Veränderungen in den Lenkungsvorgängen beitragen – aber bewiesen ist das noch nicht", so Rüdiger Klein.

Nicht schneller, aber besser

Um die Wissenslücke zu schließen, untersuchten die Neurobiologen in Mäusen den Einfluss von Proteasen auf die Geschwindigkeit der Zellabstoßung, die durch EphA4-Rezeptoren und ihre Ephrine gelenkt wird. Tatsächlich schienen die Versuche in Zellkultur die Theorie zunächst zu bestätigen. "Im lebenden Organismus haben wir dagegen etwas ganz anderes gefunden", berichtet Rüdiger Klein. Anders als erwartet verlief die Zellabstoßung in Tieren, deren EphA4-Rezeptoren auf den Axonen nicht von Proteasen geschnitten werden konnten, mit unveränderter Präzision. Konnten die EphA4-Rezeptoren jedoch weder auf den Axonen noch im Zielgewebe von Proteasen geschnitten werden, dann wuchsen viele Axone in die falsche Richtung. Durch das fehlende Zerschneiden reicherten sich immer mehr funktionsfähige EphA4-Rezeptoren im umgebenden Gewebe auf den Zelloberflächen an. Diese Rezeptoren binden an die auf der gleichen Zelloberfläche vorhandenen Ephrine. So werden die Ephrine "verdeckt" – für die Eph-Rezeptoren eines heranwachsenden Axons blieben keine Verbotsschilder mehr übrig. Als Konsequenz wurde das Axon nicht mehr abgestoßen und fand nicht mehr in sein Zielgebiet.

Die Ergebnisse zeigen, dass das Spalten der Eph-Rezeptoren durch Proteasen nicht, wie erwartet, die Abstoßungsreaktion beschleunigt. Es reguliert vielmehr die Zahl funktionierender Rezeptoren und indirekt die Zahl frei zugänglicher Ephrine in den Zellen, die als Navigationshilfen dienen. Ist das Gleichgewicht gestört, werden auswachsende Axone fehlgeleitet.

Dies ist eine wichtige Erkenntnis, da EphA4-Rezeptoren essenzielle Funktionen während der Entwicklung von neuronalen Netzwerken im Gehirn und Rückenmark haben. Auch werden sie mit neurodegenerativen Erkrankungen wie der Amyotrophen Lateralsklerose (ALS) in Zusammenhang gebracht: Fehlt der EphA4-Rezeptor, bricht die Krankheit in verschiedenen Tiermodellen später aus und entwickelt sich langsamer. "Es könnte sein, dass durch die regulierende Wirkung von Proteasen die Zahl der EphA4-Rezeptoren auf ein niedriges Maß eingestellt werden wird", überlegt Rüdiger Klein. "Das könnte eine Möglichkeit sein, den Krankheitsverlauf der ALS positiv zu beeinflussen."

Ansprechpartner

Prof. Dr. Rüdiger Klein

Max-Planck-Institut für Neurobiologie, Martinsried
Telefon:+49 89 8578-3151Fax:+49 89 8578-3152
 

Dr. Stefanie Merker

Max-Planck-Institut für Neurobiologie, Martinsried
Telefon:+49 89 8578-3514

Originalpublikation

 
Graziana Gatto, Daniel Morales, Artur Kania, Rüdiger Klein
EphA4 Receptor Shedding Regulates Spinal Motor Axon Guidance

Prof. Dr. Rüdiger Klein | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8709322/nervenzellen_proteasen_ephrine

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält
22.05.2017 | Ruhr-Universität Bochum

nachricht Myrte schaltet „Anstandsdame“ in Krebszellen aus
22.05.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie