Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervenzellen entdeckt, die bei Stressreaktion die Angst regulieren

11.11.2016

Ergebnis der Grundlagenforschung könnte langfristig zur Entwicklung von neuen Medikamenten gegen Angsterkrankungen führen

Wenn wir Stresssituationen ausgesetzt sind, startet das Gehirn eine Kettenreaktion, die das Herz in Alarmbereitschaft bringt, Angst und Furcht machen sich breit. Unser Körper aktiviert alles, um mit der Situation fertig zu werden – völlig unabhängig davon, ob es sich um den Angriff eines Feindes oder eine Prüfung handelt. Wie wird die Angstkomponente dieser Reaktion gesteuert?


Im Versuchsaufbau zeigte sich, dass Angst bei Mäusen in Stressituationen unterschiedlich stark ausgeprägt ist.

Tali Wiesel, Weizmann Institute of Science

Forscher am Max-Planck-Institut für Psychiatrie haben jüngst Nervenzellen in einer Hirnregion, dem “erweiterten Amygdalakomplex”, lokalisiert, die für die Regulierung unserer Furcht- und Angstreaktionen verantwortlich sind. Die Ergebnisse wurden kürzlich im renommierten Fachmagazin "Molecular Psychiatry" veröffentlicht.

Bei den meisten Menschen lassen Furcht- und Angstreaktionen rasch nach, sobald die bedrohliche Situation vorüber ist. Bei manchen jedoch bleibt die Angst bestehen; der Zustand kann chronisch werden und zu Angststörungen, Depression oder einer Posttraumatischen Belastungsstörung (PTBS) führen. Medikamente können helfen, aber meist sind sie bestenfalls partiell wirksam.

Prof. Alon Chen, Direktor am Max-Planck-Institut für Psychiatrie, und seine Mitarbeiterin Dr. Marloes Henckens suchten ausschließlich im erweiterten Amygdalakomplex, der Hirnregion, die für Furcht und Angst verantwortlich und an der Stressreaktion beteiligt ist, nach den entscheidenden Nervenzellen. Einige ihrer Zellen produzieren Rezeptoren für ein Protein, das in Stresssituationen freigesetzt wird.

„Wir bedienten uns einer Methode, mit der wir Nervenzellen an- und ausschalten können, um herauszufinden, ob und wie diese Zellen die Angstreaktion beeinflussen", erläutert Chen. Die Optogenetik genannte Methode setzt Licht zur Kontrolle der Aktivität von Nervenzellen ein. Labormäuse wurden gentechnisch so modifiziert, dass sie in bestimmten Nervenzellen im erweiterten Amygdalakomplex ein lichtempfindliches Protein produzieren. Durch die Bestrahlung mit lichtleitenden Fasern in blau oder gelb ließ sich die jeweilige Zelle an- oder ausschalten.

Beim Vergleich fanden die Wissenschaftler heraus, dass Mäuse, deren Neuronen angeschaltet waren, weniger ängstlich waren als diejenigen, bei denen die entsprechenden Neuronen abgeschaltet waren.

Um mehr zu erfahren, erhoben die Forscher die Kortisolwerte. Kortisol ist ein Hormon, das angemessene Stressreaktionen steuert. Die Forscher verglichen die Mäuse mit angeschalteten Neuronen mit einer Kontrollgruppe. Erstere hatten niedrigere Gesamtwerte und es dauerte weniger lang, bis ihre Kortisolwerte sich nach einem Stress auslösenden Ereignis normalisierten.

Durch ihre Experimente konnten die Wissenschaftler erstmals die Lage und Funktion der Neuronen ermitteln, die die Angstreaktion auf Stress innerhalb des erweiterten Amygdalakomplexes regulieren.

Zellen auch bei Entwicklung einer Posttraumatische Belastungsstörung beteiligt

Wenn diese Neuronen die Angstreaktion regulieren, dürften sie auch an der PTBS beteiligt sein. Um die näheren Zusammenhänge zu verstehen, setzten die Forscher die Mäuse einem traumatischen Ereignis aus. Anschließend wurden die Tiere in eine neue Umgebung gesetzt und an das traumatische Ereignis erinnert. Dadurch werden bei manchen Mäusen und auch bei Menschen Symptome von PTBS hervorgerufen.

Kurz nach dieser Konfrontation wurden bei einigen Mäusen die just entdeckten Nervenzellen mit Hilfe lichtleitender Fasern angeschaltet. Eine Woche später wurden alle Mäuse auf Anzeichen für PTBS getestet. In der Kontrollgruppe, in der die Zellen nicht bestrahlt worden waren, zeigten rund 42 Prozent der Mäuse PTBS-ähnliche Symptome, während nur acht Prozent derer, bei denen die Zellen angeschaltet waren, Anzeichen der Erkrankung zeigten.

"Das Anschalten dieser speziellen Neuronen verbesserte die Fähigkeit der Mäuse, sich von der traumatischen Erfahrung zu erholen und mit den Symptomen der PTBS fertig zu werden“, sagt Chen. „Die exakte Lokalisierung der beteiligten Neuronen und Rezeptoren könnte von entscheidender Bedeutung sein. Je besser wir die Mechanismen des Gehirns verstehen, die die Stressreaktion regulieren, umso besser können wir Medikamente entwickeln, mit denen wir Angsterkrankungen gezielter und hoffentlich auch effektiver behandeln können.“

Weitere Informationen:

http://www.psych.mpg.de/2225510/pm1572-stressreaktion-angst

Anke Schlee | Max-Planck-Institut für Psychiatrie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie