Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervenzelle vereint theoretische Modelle zur Bewegungserkennung

09.08.2016

Lichtsinneszellen reagieren, wie der Name schon sagt, auf Licht: Ist ein Bildpunkt hell, oder dunkel? Eine Bewegungsrichtung zeigt das nicht an. Diese Wahrnehmung entsteht erst im Gehirn durch vergleichende Verrechnungen benachbarter Lichtsignale. Wie diese Verrechnungen genau aussehen, darüber diskutieren Ingenieure, Physiker und Neurobiologen seit rund 50 Jahren. Nun vereinen Wissenschaftler vom Max-Planck-Institut für Neurobiologie zwei bislang als Alternativen angesehene Konzepte – auf einer einzelnen Nervenzelle im Gehirn einer Fruchtfliege.

Fliegen sind meist schwer zu fangen. Kein Wunder, denn sie investieren rund zehn Prozent ihres Gehirns dafür, Bewegungen zu erkennen und zu verarbeiten. Für die Fliege nähert sich eine Hand wie in Zeitlupe, und die Ausweichbewegung ist längst eingeleitet, bevor ernsthaft Gefahr besteht.


Wissenschaftler vereinen zwei theoretische Modelle dazu, wie Nervenzellen des Fliegenhirns aus Lichtsignalen, die nacheinander benachbarte Facetten des Auges treffen, die Bewegungsrichtung errechnen

MPI für Neurobiologie / Schorner

Wie das Fliegenhirn Bewegungen so schnell und präzise wahrnehmen und verarbeiten kann, daran forschen Wissenschaftler seit Jahrzehnten. „Nun rückt das Ziel langsam in Sicht, und wir sind nah dran, den neuronalen Schaltkreis des Bewegungssehens der Fliege vollständig zu entschlüsseln“, resümiert Alexander Borst, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie seit Langem an diesem Problem arbeitet. Jetzt haben die Wissenschaftler einen weiteren Schritt getan: Sie liefern experimentelle Daten, die zwei zuvor als alternative Theorien geltenden Ansätze vereinen.

Vor mehr als 50 Jahren wurden zwei rivalisierende theoretische Modelle entwickelt, die zu erklären versuchten, wie aus den Signalen benachbarter Bildpunkte Information über die Bewegungsrichtung errechnet werden kann. Die eine Theorie besagt, dass sich Lichtreize bei Bewegung entlang einer Richtung, der sogenannten Vorzugsrichtung, gegenseitig verstärken.

Das andere Modell nimmt dagegen an, dass sich Lichtreize entlang der entgegengesetzten Richtung, der sogenannten Nullrichtung, gegenseitig unterdrücken. In beiden Fällen würde so ein schwach richtungsselektives Signal entstehen, welches anschließend noch nachbearbeitet und verstärkt werden müsste. „Interessanterweise haben wir aber gefunden, dass bereits die ersten Zellen, die auf Bewegungsreize reagieren - die sogenannten T4- und T5-Zellen - eine stark ausgeprägte Richtungsselektivität zeigen“, berichtet Alexander Borst.

Um diesen Widerspruch zu den beiden Modellen zu untersuchen, verfeinerten die Neurobiologen einen Versuchsaufbau, sodass sie nacheinander einzelne funktionelle Kolumnen des Fliegenhirns stimulieren und die Antworten der richtungsselektiven T4-Zellen aufnehmen konnten. Die Messungen und auch die entsprechenden Computersimulationen waren eindeutig:

T4-Zellen verstärken die Eingangssignale, wenn diese entlang ihrer Vorzugsrichtung laufen, und unterdrücken sie, wenn sie entlang der Nullrichtung laufen. In den T4-Zellen des Fliegengehirns sind somit beide vorgeschlagenen Mechanismen realisiert: aus dem ‚Entweder-oder‘ wurde ein ‚Sowohl-als-auch‘. „Kein Wunder, dass diese Zellen so präzise zwischen den Bewegungsrichtungen unterscheiden können“, meint Jürgen Haag, der Erstautor der Studie. „Die Lösung der Natur ist komplizierter als die bislang vorgeschlagenen Modelle.“

Für die Computersimulationen dieses kombinierten Mechanismus benötigten die Martinsrieder Forscher drei verschiedene Eingangssignale zu den T4-Zellen. Interessanterweise erhalten T4-Zellen aber Eingangssignale von vier anderen Zellen. Dies lässt vermuten, dass der vierte, bisher noch ungeklärte Eingangskanal auf die T4-Zellen eine weitere Überraschung für die endgültige Berechnung bereithält. „Welche Informationen die T4-Zellen über diesen vierten Kanal erhalten, das wollen wir jetzt natürlich auch noch wissen“, beschreibt Alexander Borst den nächsten Schritt. „Dann haben wir erstmals gezeigt, wie in einem neuronalen Netzwerk aus einzelnen Bildpunkten die Information über die Bewegungsrichtung errechnet wird.“

ORIGINALVERÖFFENTLICHUNG
Jürgen Haag, Alexander Arenz, Etienne Serbe, Fabrizio Gabbiani und Alexander Borst
Complementary Mechanisms Create Direction Selectivity in the Fly
eLife, online am 9. August 2016. DOI: http://dx.doi.org/10.7554/eLife.17421

KONTAKT:
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-mail: merker@neuro.mpg.de

Prof. Dr. Alexander Borst
Abteilung Schaltkreise – Information – Modelle
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3251
Email: borst@neuro.mpg.de

Weitere Informationen:

http://dx.doi.org/10.7554/eLife.17421 - DOI zur Publikation in eLife
http://www.neuro.mpg.de/borst/de - Webseite der Abteilung von Prof. Alexander Borst

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik