Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervenzelle vereint theoretische Modelle zur Bewegungserkennung

09.08.2016

Lichtsinneszellen reagieren, wie der Name schon sagt, auf Licht: Ist ein Bildpunkt hell, oder dunkel? Eine Bewegungsrichtung zeigt das nicht an. Diese Wahrnehmung entsteht erst im Gehirn durch vergleichende Verrechnungen benachbarter Lichtsignale. Wie diese Verrechnungen genau aussehen, darüber diskutieren Ingenieure, Physiker und Neurobiologen seit rund 50 Jahren. Nun vereinen Wissenschaftler vom Max-Planck-Institut für Neurobiologie zwei bislang als Alternativen angesehene Konzepte – auf einer einzelnen Nervenzelle im Gehirn einer Fruchtfliege.

Fliegen sind meist schwer zu fangen. Kein Wunder, denn sie investieren rund zehn Prozent ihres Gehirns dafür, Bewegungen zu erkennen und zu verarbeiten. Für die Fliege nähert sich eine Hand wie in Zeitlupe, und die Ausweichbewegung ist längst eingeleitet, bevor ernsthaft Gefahr besteht.


Wissenschaftler vereinen zwei theoretische Modelle dazu, wie Nervenzellen des Fliegenhirns aus Lichtsignalen, die nacheinander benachbarte Facetten des Auges treffen, die Bewegungsrichtung errechnen

MPI für Neurobiologie / Schorner

Wie das Fliegenhirn Bewegungen so schnell und präzise wahrnehmen und verarbeiten kann, daran forschen Wissenschaftler seit Jahrzehnten. „Nun rückt das Ziel langsam in Sicht, und wir sind nah dran, den neuronalen Schaltkreis des Bewegungssehens der Fliege vollständig zu entschlüsseln“, resümiert Alexander Borst, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie seit Langem an diesem Problem arbeitet. Jetzt haben die Wissenschaftler einen weiteren Schritt getan: Sie liefern experimentelle Daten, die zwei zuvor als alternative Theorien geltenden Ansätze vereinen.

Vor mehr als 50 Jahren wurden zwei rivalisierende theoretische Modelle entwickelt, die zu erklären versuchten, wie aus den Signalen benachbarter Bildpunkte Information über die Bewegungsrichtung errechnet werden kann. Die eine Theorie besagt, dass sich Lichtreize bei Bewegung entlang einer Richtung, der sogenannten Vorzugsrichtung, gegenseitig verstärken.

Das andere Modell nimmt dagegen an, dass sich Lichtreize entlang der entgegengesetzten Richtung, der sogenannten Nullrichtung, gegenseitig unterdrücken. In beiden Fällen würde so ein schwach richtungsselektives Signal entstehen, welches anschließend noch nachbearbeitet und verstärkt werden müsste. „Interessanterweise haben wir aber gefunden, dass bereits die ersten Zellen, die auf Bewegungsreize reagieren - die sogenannten T4- und T5-Zellen - eine stark ausgeprägte Richtungsselektivität zeigen“, berichtet Alexander Borst.

Um diesen Widerspruch zu den beiden Modellen zu untersuchen, verfeinerten die Neurobiologen einen Versuchsaufbau, sodass sie nacheinander einzelne funktionelle Kolumnen des Fliegenhirns stimulieren und die Antworten der richtungsselektiven T4-Zellen aufnehmen konnten. Die Messungen und auch die entsprechenden Computersimulationen waren eindeutig:

T4-Zellen verstärken die Eingangssignale, wenn diese entlang ihrer Vorzugsrichtung laufen, und unterdrücken sie, wenn sie entlang der Nullrichtung laufen. In den T4-Zellen des Fliegengehirns sind somit beide vorgeschlagenen Mechanismen realisiert: aus dem ‚Entweder-oder‘ wurde ein ‚Sowohl-als-auch‘. „Kein Wunder, dass diese Zellen so präzise zwischen den Bewegungsrichtungen unterscheiden können“, meint Jürgen Haag, der Erstautor der Studie. „Die Lösung der Natur ist komplizierter als die bislang vorgeschlagenen Modelle.“

Für die Computersimulationen dieses kombinierten Mechanismus benötigten die Martinsrieder Forscher drei verschiedene Eingangssignale zu den T4-Zellen. Interessanterweise erhalten T4-Zellen aber Eingangssignale von vier anderen Zellen. Dies lässt vermuten, dass der vierte, bisher noch ungeklärte Eingangskanal auf die T4-Zellen eine weitere Überraschung für die endgültige Berechnung bereithält. „Welche Informationen die T4-Zellen über diesen vierten Kanal erhalten, das wollen wir jetzt natürlich auch noch wissen“, beschreibt Alexander Borst den nächsten Schritt. „Dann haben wir erstmals gezeigt, wie in einem neuronalen Netzwerk aus einzelnen Bildpunkten die Information über die Bewegungsrichtung errechnet wird.“

ORIGINALVERÖFFENTLICHUNG
Jürgen Haag, Alexander Arenz, Etienne Serbe, Fabrizio Gabbiani und Alexander Borst
Complementary Mechanisms Create Direction Selectivity in the Fly
eLife, online am 9. August 2016. DOI: http://dx.doi.org/10.7554/eLife.17421

KONTAKT:
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-mail: merker@neuro.mpg.de

Prof. Dr. Alexander Borst
Abteilung Schaltkreise – Information – Modelle
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3251
Email: borst@neuro.mpg.de

Weitere Informationen:

http://dx.doi.org/10.7554/eLife.17421 - DOI zur Publikation in eLife
http://www.neuro.mpg.de/borst/de - Webseite der Abteilung von Prof. Alexander Borst

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Basis für neue medikamentöse Therapie bei Demenz
27.07.2017 | Medizinische Hochschule Hannover

nachricht Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse
27.07.2017 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie