Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017

CAU-Forschungsteam belegt erstmals Zusammenarbeit zwischen Nervensystem und mikrobieller Besiedlung des Körpers

Ein zentraler Aspekt der modernen Lebenswissenschaften ist die Erforschung des symbiotischen Zusammenlebens von Tier, Pflanze und Mensch mit ihren spezifischen bakteriellen Besiedlungen. Die Gesamtheit der Mikroorganismen, die auf und in einem Wirtsorganismus angesiedelt sind, bezeichnen Wissenschaftlerinnen und Wissenschaftler als Mikrobiom. Seit einigen Jahren verdichten sich Hinweise, dass die Zusammensetzung und Balance des Mikrobioms eine entscheidende Rolle für die Gesundheit spielen.


Nervenzellen (grün markiert) des Süßwasserpolypen Hydra produzieren antimikrobielle Peptide und prägen so das Mikrobiom des Tieres. Rot markierte Stäbchenbakterien befinden sich an den Tentakeln.

Abbildung: Christoph Giez, Dr. Alexander Klimovich


Fasern des Darmgewebes (rot markiert) umgeben Nervenzellen (grün markiert) des Süßwasserpolypen Hydra.

Abbildung: Christoph Giez, Dr. Alexander Klimovich

Störungen der bakteriellen Besiedlung des Körpers dagegen sind insbesondere an der Entstehung verschiedener sogenannter Umwelterkrankungen beteiligt. Wie die Zusammenarbeit von Organismus und Bakterien auf molekularer Ebene abläuft und wie Mikrobiom und Körper dabei als funktionale Einheit agieren, ist bislang allerdings weitgehend unbekannt.

Einen wichtigen Schritt in der Entschlüsselung dieser hochkomplexen Beziehungen ist nun ein Forschungsteam der Arbeitsgruppe Zell- und Entwicklungsbiologie am Zoologischen Institut der Christian-Albrechts-Universität zu Kiel (CAU) gegangen:

Am Beispiel des Süßwasserpolypen Hydra untersuchten die Kieler Forschenden gemeinsam mit internationalen Kolleginnen und Kollegen, wie das einfache Nervensystem dieser Tiere mit ihrem Mikrobiom interagiert. Dabei konnten sie erstmals belegen, dass Nervenzellen kleine Moleküle produzieren, die als Botenstoffe die Zusammensetzung und Ansiedlung spezifischer Bakterienarten im Körper bestimmen.

„Bisher waren die Faktoren, die die Bakterienbesiedlung des Körpers beeinflussen, weitgehend unbekannt. Wir konnten zum ersten Mal nachweisen, dass das Nervensystem hier eine wichtige regulierende Rolle übernimmt“, betont Professor Thomas Bosch, Entwicklungsbiologe und Sprecher des von der Deutschen Forschungsgemeinschaft (DFG) geförderten Sonderforschungsbereichs (SFB) 1182 „Entstehen und Funktionieren von Metaorganismen“. Ihre neuartigen Erkenntnisse veröffentlichten die Wissenschaftlerinnen und Wissenschaftler am heutigen Dienstag in der renommierten Fachzeitschrift Nature Communications.

Das von Bosch geleitete Forschungsteam wählte für seine Untersuchungen den entwicklungsgeschichtlich alten Süßwasserpolypen Hydra, ein in Süß- und Fließgewässern lebendes Nesseltier. Seine einfachen Strukturen erleichtern die Erforschung der grundlegenden Strukturen und Funktionsweise des Nervensystems; so verfügt Hydra über einen simplen Körperbau und ein Nervennetz mit nur etwa 3000 einzelnen Nervenzellen.

Zugleich weist das Tier trotz seiner Einfachheit bereits zahlreiche molekulare Merkmale höherer Lebewesen auf, die zum Beispiel auch bei den Wirbeltieren noch vorhanden sind. Daher lassen sich am Beispiel dieses Modellorganismus ursprüngliche und daher universell gültige Funktionsprinzipien des Nervensystems ableiten.

Die Kieler Forschenden gingen der Frage nach, wie die als Neuropeptide bezeichneten Botenstoffe des Nervensystems die Zusammenarbeit und Kommunikation von Wirt und Mikroben steuern. Sie fanden zelluläre, molekulare und genetische Belege dafür, dass Neuropeptide eine antibakterielle Wirkung entfalten können und damit die Zusammensetzung und räumliche Verteilung der Bakterienbesiedlung beeinflussen.

Um dies zu belegen, konzentrierte sich das Forschungsteam auf die Ausbildung des Nervensystems des Süßwasserpolypen in der individuellen Entwicklung vom Ei bis hin zum ausgewachsenen Tier. Die Nesseltiere entwickeln innerhalb von etwa drei Wochen ein vollständiges Nervensystem; während dieser Zeit ändert sich auch die Bakterienbesiedlung ihres noch unreifen Körpers radikal, bis sich schließlich eine stabile Zusammensetzung des Mikrobioms herausbildet.

Unter dem Einfluss der antimikrobiellen Wirkung der Neuropeptide nimmt die Konzentration einer bestimmten Untergruppe von Bakterien, der sogenannten grampositiven Bakterien, im Laufe von etwa vier Wochen stark ab. Am Ende dieses Reifeprozesses herrscht eine typische, insbesondere von gramnegativen Curvibacter-Bakterien dominierte Zusammensetzung des Mikrobioms vor.

Da Hydra die steuernden Neuropeptide nur an bestimmten Stellen des Körpers bildet, sorgen sie für eine entsprechende Verteilung der Bakterien entlang der Körperachse des Tieres. So finden sich im Bereich des Kopfes, wo eine starke Konzentration von antimikrobiellen Neuropeptiden herrscht, zum Beispiel sechsmal weniger Curvibacter-Bakterien als in den Tentakeln.

Daraus schlossen die Wissenschaftlerinnen und Wissenschaftler, dass das Nervensystem im Laufe der Evolution neben seinen sensorischen und motorischen Aufgaben auch eine steuernde Funktion für das Mikrobiom übernommen hat. „Die neuen Erkenntnisse sind auch im evolutionären Zusammenhang von immenser Bedeutung. Da die Nesseltiere im Laufe der Evolution als erste Organismen ein Nervensystem entwickelten, kann man davon ausgehen, dass sich die Interaktion von Nervensystem und Mikrobiom bereits sehr früh in der Entwicklung des vielzelligen Lebens herausbildete“, betont Bosch.

Die an entwicklungsgeschichtlich ursprünglichen Organismen nachgewiesenen Prinzipien seien nicht nur für die Grundlagenforschung interessant. Sie brächten zudem die Chance mit sich, daraus grundlegende neue Erkenntnisse über die Eigenschaften des Nervensystems abzuleiten und das Gelernte in andere Anwendungen zu übertragen. Daher werde sich die weitere Erforschung des Zusammenspiels von Körper und Bakterien künftig stärker auf die neuronalen Aspekte konzentrieren, fasst Bosch die Bedeutung der Arbeit zusammen.

Originalarbeit:
René Augustin, Katja Schröder, Andrea P. Murillo Rincón, Sebastian Fraune, Friederike Anton-Erxleben, Ava-Maria Herbst, Jörg Wittlieb, Martin Schwentner, Joachim Grötzinger, Trudy M. Wassenaar, Thomas C.G. Bosch (2017): “A secreted antibacterial neuropeptide shapes the microbiome of Hydra”. Nature Communications, Published on September 26, 2017,
https://www.nature.com/articles/s41467-017-00625-1

Bilder/Videomaterial stehen zum Download bereit:
http://www.uni-kiel.de/download/pm/2017/2017-294-1.jpg
Bildunterschrift: Nervenzellen (grün markiert) des Süßwasserpolypen Hydra produzieren antimikrobielle Peptide und prägen dadurch das Mikrobiom des Tieres. Rot markierte Stäbchenbakterien sind an der Basis der Tentakeln zu erkennen.
Abbildung: Christoph Giez, Dr. Alexander Klimovich

http://www.uni-kiel.de/download/pm/2017/2017-294-2.jpg
Bildunterschrift: Fasern des Darmgewebes (rot markiert) umgeben Nervenzellen (grün markiert) des Süßwasserpolypen Hydra.
Abbildung: Christoph Giez, Dr. Alexander Klimovich

http://youtu.be/b44VPDhZKTQ
Beschreibung: Die einfachen Strukturen des Süßwasserpolypen Hydra erleichtern die Erforschung des Zusammenwirkens von Nervensystem und Bakterienbesiedlung.
Video: Forschungsschwerpunkt „Kiel Life Science“, Universität Kiel

Kontakt:
Prof. Thomas Bosch
Zoologisches Institut, CAU Kiel
Tel.: 0431-880-4170
E-Mail: tbosch@zoologie.uni-kiel.de

Weitere Informationen:
Forschungsschwerpunkt „Kiel Life Science“, CAU Kiel
http://www.kls.uni-kiel.de

Sonderforschungsbereich 1182 „Entstehen und Funktionieren von Metaorganismen“, CAU Kiel:
http://www.metaorganism-research.com

Zell- und Entwicklungsbiologie (AG Bosch), Zoologisches Institut, CAU Kiel:
http://www.bosch.zoologie.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Text: Christian Urban
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de, Twitter: www.twitter.com/kieluni
Facebook: www.facebook.com/kieluni, Instagram: www.instagram.com/kieluni

Link zur Pressemeldung:
http://www.uni-kiel.de/pressemeldungen/index.php?pmid=2017-294-nerven-bakterien

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

nachricht Der lange Irrweg der ADP Ribosylierung
26.04.2018 | Max-Planck-Institut für Biologie des Alterns

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde

26.04.2018 | Informationstechnologie

Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst

26.04.2018 | Biowissenschaften Chemie

Berner Mars-Kamera liefert erste farbige Bilder vom Mars

26.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics