Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nebenwirkungen bei möglicher Anti-Krebs-Strategie gegen Lymphome entdeckt

17.11.2014

Das Protein Malt1 ist eine der wichtigsten Schaltzentralen in menschlichen Immunzellen und ein echtes Multitalent. Treten genetische Fehler darin auf, kann das zur Entstehung von Lymphdrüsenkrebs (Lymphomen) führen.

Als möglicher Therapieansatz gilt deshalb, bestimmte Funktionen von Malt1 gezielt zu blockieren und so die Krebszellen zu zerstören. Im Mausmodell zeigten Wissenschaftler der Technischen Universität München (TUM) jetzt aber, dass eine solche Blockade schwere Nebenwirkungen hervorrufen kann.


Prof. Jürgen Ruland (rechts) erforscht mit seiner Arbeitsgruppe unter anderem die Entstehung und Bekämpfung von Lymphomen. (Bild: A. Heddergott / TUM)

Das Protein Malt1 übernimmt in Immunzellen, so genannten Lymphozyten, viele unterschiedliche Aufgaben. Es wirkt unter anderem als Enzym, als so gennannte Protease, die Botenstoffe abbaut und so deren Menge kontrolliert. Welche Bedeutung die spezielle Protease-Funktion für die Entwicklung von Immunzellen hat, war bisher nicht bekannt. Vor einigen Jahren rückte sie in den Fokus von Prof. Jürgen Ruland und seinem Team vom Klinikum rechts der Isar der TUM.

Blockade als Therapieansatz

Anhand von Zellkulturexperimenten konnten die Wissenschaftler in früheren Studien zeigen, dass eine Blockade der Protease-Funktion von Malt1 Lymphdrüsenkrebszellen absterben ließ. Eine Idee war deshalb, diese Strategie gegen Lymphome einzusetzen, in denen Malt1 häufig aufgrund eines genetischen Defekt übermäßig aktiv war. „Es gilt als vielversprechender Therapieansatz, Substanzen zu entwickeln, die gezielt die Protease-Funktion von Malt1 hemmen.“, erklärt Andreas Gewies, Erstautor der Studie.

Der nächste Schritt war deshalb, diese Blockade jetzt im Tiermodell zu testen und damit auch die genaue Funktion der Malt1-Protease besser zu verstehen. „Gerade wenn wir die komplizierten Wechselwirkungen im Immunsystem untersuchen wollen, die auf einer hochregulierten Interaktion unterschiedlicher Zelltypen beruht, geht das nur im intakten Organismus und nicht in Zellkulturen. Die Abläufe sind zu komplex, um sie in Zellen außerhalb des Körpers nachzustellen.“, betont Ruland den Schritt ins Tiermodell.

Unerwartete Wirkungen im Mausmodell

Die verwendeten Mäuse wurden genetisch so verändert, dass ihre Malt1-Proteine nicht mehr als Protease arbeiten konnten, alle anderen Aufgaben aber noch erfüllten. Die Wissenschaftler beobachteten überraschend, dass die Mäuse starke Entzündungszeichen entwickelten. Zudem wurden wichtige Nervenzellen, die Bewegungsabläufe koordinieren, vom Immunsystem angegriffen und zerstört. Als Folge hatten die Tiere Probleme ihre Bewegungen zu kontrollieren und zu steuern.

Die Wissenschaftler konnten klären, wie es zu diesen schwerwiegenden Fehlfunktionen des Immunsystems kam und entdeckten dabei eine unerwartete Funktion von Malt1. Sie fanden heraus, dass Mäuse ohne die Protease-Funktion eine spezielle Lymphozyten-Untergruppe, die regulatorischen T-Zellen (Tregs), nicht mehr ausbilden konnten. Diese Zellen sind entscheidend für die Feinregulation von Immunantworten. Sie sorgen dafür, dass Immunantworten gebremst und vor allem streng kontrolliert werden. Ohne Tregs gerieten die Immunantworten in den Mäusen außer Kontrolle und waren übermäßig stark.

Zudem stellten die Forscher fest, dass normale Lymphozyten zwar ohne die Protease-Funktion von Malt1 aktiviert werden konnten, dann aber unkontrolliert Botenstoffe abgaben, was Entzündungen hervorrief. „Mit unserer Studie können wir zeigen, dass die Malt1-Protease überaschenderweise für die Entwicklung der regulatorischen T-Zellen und insgesamt für die Dämpfung der Immunantwort wichtig ist. Da die Blockade der Protease-Funktion im Organismus unerwünschte Wirkungen hervorruft, sollte dringend nach neuen Alternativen für die Therapie von Lymphomen gesucht werden.“, fasst Ruland die Ergebnisse zusammen.

Originalpublikation
A. Gewies, Gorka O., Bergmann H., Pechloff K., Petermann F., Jeltsch K. M., Rudelius M., Kriegsmann M., Weichert W., Horsch M., Beckers J., Wurst W., Heikenwälder M., Korn T., Heissmeyer V. und J. Ruland, Uncoupling Malt1 threshold function from paracaspase activity results in destructive autoimmune inflammation, Cell Reports, 2014.
DOI: 10.1016/j.celrep.2014.10.044

Kontakt
Prof. Dr. Jürgen Ruland
Institut für Klinische Chemie und Pathobiochemie
Klinikum rechts der Isar an der Technischen Universität München
Tel.: +49 89 4140-4751

jruland@lrz.tum.de
www.klinchem.med.tum.de


Weitere Informationen:

http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/31898/  - Dieser Text im Web

Dr. Ulrich Marsch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten