Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bei Nebel überschätzen Autofahrer die eigene Geschwindigkeit

30.10.2012
Max-Planck-Wissenschaftler erklären, warum bei Nebel langsamer gefahren wird

Wie Menschen auf eine beeinträchtigte Sicht reagieren, ist ein zentrales Thema der Sehforschung. Frühere Studien zeigen, dass eine gleichmäßige Verringerung des Kontrasts im gesamten Blickfeld, wie beispielsweise bei einer beschlagenen Windschutzscheibe, eine Unterschätzung der Geschwindigkeit und damit eine schnellere Fahrweise zur Folge hat.


Die Leinwand am Max-Planck-Institut für biologische Kybernetik umfasst horizontal 230° und vertikal 125°. Somit füllt die Projektion das gesamte menschliche Sichtfeld aus und erzeugt eine realistische Fahrsituation.

Bild: Jan Soumann / Max-Planck-Institut für biologische Kybernetik Tübingen


Die Leinwand am Max-Planck-Institut für biologische Kybernetik umfasst horizontal 230° und vertikal 125°. Somit füllt die Projektion das gesamte menschliche Sichtfeld aus und erzeugt eine realistische Fahrsituation (Blickwinkel des Fahrers).

Bild: Jan Soumann / Max-Planck-Institut für biologische Kybernetik Tübingen

Wie eine Veröffentlichung in eLife nun zeigt, belegen Wissenschaftler vom Max-Planck-Institut für biologische Kybernetik in Tübingen die These erneut. Jedoch gingen sie noch einen Schritt weiter: Was passiert, wenn der Kontrast nur im Zentrum des Blickfeldes reduziert wird, wodurch Dinge in der Ferne schwerer erkennbar sind, wie es beispielsweise bei Nebel der Fall ist? Die Ergebnisse sind verblüffend und helfen, Einblicke in das menschliche Sehsystem zu gewinnen.

Für die Experimente konzipierte Paolo Pretto aus der Abteilung von Direktor Heinrich Bülthoff am Max-Planck-Institut für biologische Kybernetik Projektionen für eine drei Meter hohe und sieben Meter breite, gekrümmte Leinwand, die das gesamte Sichtfeld ausfüllt. Ein davor positioniertes Fahrzeug vermittelt erfahrenen Autofahrern das Gefühl einer realistischen Fahrsituation. Anhand verschiedener Versuche konnten Pretto und seine Kollegen nun erstmalig zeigen, dass ein vermeintlich kleiner Unterschied in der Kontrastveränderung bei Autofahren zu einer gegenteiligen Geschwindigkeitswahrnehmung und folglich zu einer gegenteiligen Handlung führt: Eine auf Distanz graduell – im Vergleich zu einer gleichmäßigen – Kontrastreduzierung der Umgebung hat eine Überschätzung der Geschwindigkeit zur Folge und nicht, wie bisher angenommen, eine Unterschätzung.

Zunächst konfrontierten die Forscher Testpersonen mit zwei verschiedenen Fahrszenen. Sie sollten einschätzen, in welcher der beiden Szenen sie sich schneller fortbewegten. In der Kontrollszene fuhren sie bei klarer Sicht und gleichbleibender Geschwindigkeit auf einer Asphaltstraße durch eine Graslandschaft. In der Testszene fuhren sie ebenfalls bei gleichbleibender Geschwindigkeit durch dieselbe Landschaft. Jedoch wurde dieses Mal der Kontrast der Landschaft verändert und damit die Sichtverhältnisse verschlechtert. Schon diese Experimente zeigten, dass die Fahrer ihre Geschwindigkeit bei nebelähnlichen Bedingungen überschätzten, wohingegen sie bei einer gleichmäßigen Sichtbeeinträchtigung, ähnlich einer beschlagenen Windschutzscheibe, ihre Geschwindigkeit unterschätzten.

Weitere Versuchsreihen bestätigten, dass diese unterschiedlichen Einschätzungen auch Auswirkungen auf das Fahrverhalten haben. Bei guter Sicht betrug die Durchschnittsgeschwindigkeit der Probanden ungefähr 85 Kilometer pro Stunde, bei starkem Nebel dagegen nur etwa 70 Kilometer pro Stunde. Bei einer gleichmäßigen Kontrastreduktion unterschätzten die Fahrer ihre Geschwindigkeit jedoch und fuhren schneller – das Tempo betrug hier durchschnittlich 100 Kilometer pro Stunde.

Basierend auf dieser und weiteren Studien entwickelten die Wissenschaftler eine neue Theorie der Geschwindigkeitswahrnehmung: Bei Nebel beispielsweise, ist die Sicht im zentralen Blickfeld – also dort wo entfernte Objekte wahrgenommen werden – deutlich vermindert. Hier wird das eigene Tempo als relativ langsam wahrgenommen. Im peripheren Sichtfeld hingegen – und damit in der unmittelbaren Umgebung – als verhältnismäßig schnell. Die Wissenschaftler kamen zu dem Schluss, dass dieser Unterschied verantwortlich für die eigene Geschwindigkeitsüberschätzung sein musste.

Um diese Theorie zu belegen, wurde eine weitere Versuchsreihe durchgeführt. Zu den schon vorab verwendeten Parametern „gute Sicht“ und „Nebel“ wurde nun ein weiterer, im wahren Leben nicht vorkommender, kreiert: der „Anti-Nebel“. Beim „Anti-Nebel“ ist die Sicht im unmittelbaren Umfeld schlecht, verbessert sich jedoch proportional zur Entfernung. Wie erwartet, überschätzten die Testfahrer bei dieser künstlichen Situation ihre Geschwindigkeit und fuhren zu schnell: etwa 100 Kilometern pro Stunde, verglichen mit ungefähr 70 Kilometern pro Stunde bei guter Sicht und gerade mal 50 Kilometern pro Stunde bei Nebel.

Paolo Pretto und seinen Kollegen gelang es damit, die vorherrschende Theorie in ihrer pauschalen Schlussfolgerung zu widerlegen und zu beweisen, dass sich die Geschwindigkeitswahrnehmung ändert, wenn die Sichtverhältnisse innerhalb unseres Blickfeldes unterschiedlich sind. Um Unfälle zu verhindern, tun wir also gut daran, unserem Sehsystem zu vertrauen, wenn es uns dazu veranlasst, bei Nebel langsamer zu fahren.

Weitere Informationen über Paolo Pretto und seine Arbeit:
http://www.kyb.tuebingen.mpg.de/de/forschung/abt/bu/bewegungswahrnehmung-in-fahrsimulation.html

eLife ist eine Initiative des Howard Hughes Medical Institute, der Max-Planck-Gesellschaft und des Wellcome Trust. Zusammen mit einer wachsenden Zahl von öffentlichen und privaten Organisationen zur wissenschaftlichen Förderungen weltweit erkannten diese drei, dass die Kommunikation von Forschungsergebnissen ein grundlegender Bestandteil des Forschungsprozesses ist.

Mehr Informationen über eLife: http://www.elifesciences.org

Originalpublikation:
Pretto P., Bresciani J.-P., Rainer G., Bülthoff H. H. (2012) Foggy perception slows us down. eLife. doi: 10.7554/eLife.00031.001
Kontakt:
Dr. Paolo Pretto
Tel.: 07071 601-644
E-Mail: paolo.pretto@tuebingen.mpg.de
Stephanie Bertenbreiter (Pressereferentin)
Tel.: 07071 601-1792
E-Mail: presse-kyb@tuebingen.mpg.de
Das Max-Planck-Institut für biologische Kybernetik forscht an der Aufklärung von kognitiven Prozessen auf experimentellem, theoretischem und methodischem Gebiet. Es beschäftigt rund 300 Mitarbeiterinnen und Mitarbeiter aus über 40 Ländern und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für biologische Kybernetik ist eines der 80 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Stephanie Bertenbreiter | Max-Planck-Institut
Weitere Informationen:
http://www.elifesciences.org
http://tuebingen.mpg.de/startseite/detail/bei-nebel-ueberschaetzen-autofahrer-die-eigene-geschwindigkeit.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften