Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bei Nebel überschätzen Autofahrer die eigene Geschwindigkeit

30.10.2012
Max-Planck-Wissenschaftler erklären, warum bei Nebel langsamer gefahren wird

Wie Menschen auf eine beeinträchtigte Sicht reagieren, ist ein zentrales Thema der Sehforschung. Frühere Studien zeigen, dass eine gleichmäßige Verringerung des Kontrasts im gesamten Blickfeld, wie beispielsweise bei einer beschlagenen Windschutzscheibe, eine Unterschätzung der Geschwindigkeit und damit eine schnellere Fahrweise zur Folge hat.


Die Leinwand am Max-Planck-Institut für biologische Kybernetik umfasst horizontal 230° und vertikal 125°. Somit füllt die Projektion das gesamte menschliche Sichtfeld aus und erzeugt eine realistische Fahrsituation.

Bild: Jan Soumann / Max-Planck-Institut für biologische Kybernetik Tübingen


Die Leinwand am Max-Planck-Institut für biologische Kybernetik umfasst horizontal 230° und vertikal 125°. Somit füllt die Projektion das gesamte menschliche Sichtfeld aus und erzeugt eine realistische Fahrsituation (Blickwinkel des Fahrers).

Bild: Jan Soumann / Max-Planck-Institut für biologische Kybernetik Tübingen

Wie eine Veröffentlichung in eLife nun zeigt, belegen Wissenschaftler vom Max-Planck-Institut für biologische Kybernetik in Tübingen die These erneut. Jedoch gingen sie noch einen Schritt weiter: Was passiert, wenn der Kontrast nur im Zentrum des Blickfeldes reduziert wird, wodurch Dinge in der Ferne schwerer erkennbar sind, wie es beispielsweise bei Nebel der Fall ist? Die Ergebnisse sind verblüffend und helfen, Einblicke in das menschliche Sehsystem zu gewinnen.

Für die Experimente konzipierte Paolo Pretto aus der Abteilung von Direktor Heinrich Bülthoff am Max-Planck-Institut für biologische Kybernetik Projektionen für eine drei Meter hohe und sieben Meter breite, gekrümmte Leinwand, die das gesamte Sichtfeld ausfüllt. Ein davor positioniertes Fahrzeug vermittelt erfahrenen Autofahrern das Gefühl einer realistischen Fahrsituation. Anhand verschiedener Versuche konnten Pretto und seine Kollegen nun erstmalig zeigen, dass ein vermeintlich kleiner Unterschied in der Kontrastveränderung bei Autofahren zu einer gegenteiligen Geschwindigkeitswahrnehmung und folglich zu einer gegenteiligen Handlung führt: Eine auf Distanz graduell – im Vergleich zu einer gleichmäßigen – Kontrastreduzierung der Umgebung hat eine Überschätzung der Geschwindigkeit zur Folge und nicht, wie bisher angenommen, eine Unterschätzung.

Zunächst konfrontierten die Forscher Testpersonen mit zwei verschiedenen Fahrszenen. Sie sollten einschätzen, in welcher der beiden Szenen sie sich schneller fortbewegten. In der Kontrollszene fuhren sie bei klarer Sicht und gleichbleibender Geschwindigkeit auf einer Asphaltstraße durch eine Graslandschaft. In der Testszene fuhren sie ebenfalls bei gleichbleibender Geschwindigkeit durch dieselbe Landschaft. Jedoch wurde dieses Mal der Kontrast der Landschaft verändert und damit die Sichtverhältnisse verschlechtert. Schon diese Experimente zeigten, dass die Fahrer ihre Geschwindigkeit bei nebelähnlichen Bedingungen überschätzten, wohingegen sie bei einer gleichmäßigen Sichtbeeinträchtigung, ähnlich einer beschlagenen Windschutzscheibe, ihre Geschwindigkeit unterschätzten.

Weitere Versuchsreihen bestätigten, dass diese unterschiedlichen Einschätzungen auch Auswirkungen auf das Fahrverhalten haben. Bei guter Sicht betrug die Durchschnittsgeschwindigkeit der Probanden ungefähr 85 Kilometer pro Stunde, bei starkem Nebel dagegen nur etwa 70 Kilometer pro Stunde. Bei einer gleichmäßigen Kontrastreduktion unterschätzten die Fahrer ihre Geschwindigkeit jedoch und fuhren schneller – das Tempo betrug hier durchschnittlich 100 Kilometer pro Stunde.

Basierend auf dieser und weiteren Studien entwickelten die Wissenschaftler eine neue Theorie der Geschwindigkeitswahrnehmung: Bei Nebel beispielsweise, ist die Sicht im zentralen Blickfeld – also dort wo entfernte Objekte wahrgenommen werden – deutlich vermindert. Hier wird das eigene Tempo als relativ langsam wahrgenommen. Im peripheren Sichtfeld hingegen – und damit in der unmittelbaren Umgebung – als verhältnismäßig schnell. Die Wissenschaftler kamen zu dem Schluss, dass dieser Unterschied verantwortlich für die eigene Geschwindigkeitsüberschätzung sein musste.

Um diese Theorie zu belegen, wurde eine weitere Versuchsreihe durchgeführt. Zu den schon vorab verwendeten Parametern „gute Sicht“ und „Nebel“ wurde nun ein weiterer, im wahren Leben nicht vorkommender, kreiert: der „Anti-Nebel“. Beim „Anti-Nebel“ ist die Sicht im unmittelbaren Umfeld schlecht, verbessert sich jedoch proportional zur Entfernung. Wie erwartet, überschätzten die Testfahrer bei dieser künstlichen Situation ihre Geschwindigkeit und fuhren zu schnell: etwa 100 Kilometern pro Stunde, verglichen mit ungefähr 70 Kilometern pro Stunde bei guter Sicht und gerade mal 50 Kilometern pro Stunde bei Nebel.

Paolo Pretto und seinen Kollegen gelang es damit, die vorherrschende Theorie in ihrer pauschalen Schlussfolgerung zu widerlegen und zu beweisen, dass sich die Geschwindigkeitswahrnehmung ändert, wenn die Sichtverhältnisse innerhalb unseres Blickfeldes unterschiedlich sind. Um Unfälle zu verhindern, tun wir also gut daran, unserem Sehsystem zu vertrauen, wenn es uns dazu veranlasst, bei Nebel langsamer zu fahren.

Weitere Informationen über Paolo Pretto und seine Arbeit:
http://www.kyb.tuebingen.mpg.de/de/forschung/abt/bu/bewegungswahrnehmung-in-fahrsimulation.html

eLife ist eine Initiative des Howard Hughes Medical Institute, der Max-Planck-Gesellschaft und des Wellcome Trust. Zusammen mit einer wachsenden Zahl von öffentlichen und privaten Organisationen zur wissenschaftlichen Förderungen weltweit erkannten diese drei, dass die Kommunikation von Forschungsergebnissen ein grundlegender Bestandteil des Forschungsprozesses ist.

Mehr Informationen über eLife: http://www.elifesciences.org

Originalpublikation:
Pretto P., Bresciani J.-P., Rainer G., Bülthoff H. H. (2012) Foggy perception slows us down. eLife. doi: 10.7554/eLife.00031.001
Kontakt:
Dr. Paolo Pretto
Tel.: 07071 601-644
E-Mail: paolo.pretto@tuebingen.mpg.de
Stephanie Bertenbreiter (Pressereferentin)
Tel.: 07071 601-1792
E-Mail: presse-kyb@tuebingen.mpg.de
Das Max-Planck-Institut für biologische Kybernetik forscht an der Aufklärung von kognitiven Prozessen auf experimentellem, theoretischem und methodischem Gebiet. Es beschäftigt rund 300 Mitarbeiterinnen und Mitarbeiter aus über 40 Ländern und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für biologische Kybernetik ist eines der 80 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Stephanie Bertenbreiter | Max-Planck-Institut
Weitere Informationen:
http://www.elifesciences.org
http://tuebingen.mpg.de/startseite/detail/bei-nebel-ueberschaetzen-autofahrer-die-eigene-geschwindigkeit.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Arten in der Nordsee-Kita
05.12.2016 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Alter beeinflusst den Mikronährstoffgehalt im Blut
05.12.2016 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

4,6 Mio. Euro für Cloud Computing-Gemeinschaftsprojekt „Cloud Mall BW“

05.12.2016 | Förderungen Preise

1,5 Mio. Euro für das Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW)

05.12.2016 | Förderungen Preise

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise