Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Meereis spielt eine wichtige Rolle im arktischen Methankreislauf

11.11.2015

Nature-Studie über Feedback-Mechanismen des Treibhausgases zwischen Atmosphäre, Meereis und Ozean

Der eisbedeckte Arktische Ozean spielt eine größere Rolle für die Konzentration des Treibhausgases Methan in der Atmosphäre als bisher angenommen. Über neuentdeckte Wechselwirkungen zwischen Atmosphäre, Meereis und Ozean berichten Forscher vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) in einer aktuellen online-Studie in den Scientific Reports der Fachzeitschrift Nature.


FS Polarstern in der Arktis: Installation von Untereis-Sensoren

Foto: Alfred-Wegener-Institut / Stefan Hendricks

Das Meereis bildet einen natürlichen Deckel auf dem zentralen Arktischen Ozean, der den Gasaustausch zwischen Wasser und Atmosphäre begrenzt. In den letzten Jahren ist die sommerliche Meereisbedeckung in der Arktis rapide geschrumpft.

„Wir untersuchen, wie sich die veränderten Bedingungen auf die Stoffkreisläufe zwischen Ozean, Eis und Atmosphäre auswirken“, erklärt Dr. Ellen Damm, Biogeochemikerin am Alfred-Wegener-Institut. „Wir konnten nachweisen, dass das Oberflächenwasser in der zentralen Arktis höhere Methankonzentrationen enthält als die Atmosphäre. Das bedeutet, dass der Arktische Ozean eine potentielle Quelle für atmosphärisches Methan ist. Damit unterscheidet er sich grundlegend vom Ozean in niederen Breiten, der - bis auf einzelne punktuelle Quellen - als Methansenke gilt“, so die Erstautorin.

Für die Studie hatten Damm und ihre Kollegen vom AWI, dem finnischen meteorologischen Institut und der Universität Bremen geochemische und ozeanographische Daten ausgewertet, die 2011 auf einer Expedition mit dem Forschungsschiff Polarstern gewonnen wurden. Dafür haben die Wissenschaftler Methan sowohl im Meereis und im Wasser direkt darunter als auch im vom Eis unbeeinflussten Ozeanwasser gemessen.

„Unsere Studie zeigt, dass bisher unbekannte Wechselwirkungen zwischen Schmelzen und Bildung von Eis, der Atmosphäre und von Eis beeinflusstem Meerwasser bestehen“, sagt Damm. Unter anderem analysierten sie Salzlake, also Sole, die bei der Bildung von Meereis als hochkonzentriertes Meerwasser in Kanälen im Eis entsteht. Die Sole hatte eine tausendfach höhere Methankonzentration im Vergleich zur Atmosphäre. Das zeigt, dass Meereis eine Quelle für Methan sein kann.

Sowohl Schmelz- als auch Gefrierprozesse führen dazu, dass das Methan aus den Solekanälen in das Ozeanwasser gelangen kann. Schmelzendes Meereis bedingt außerdem, dass das Wasser wegen der unterschiedlichen Dichte von Süß- und Salzwasser stabil geschichtet ist. So bleibt das Methan aus den Solekanälen im Sommer in der oberflächennahen Wasserschicht.

Wenn Herbststürme einsetzen und es kälter wird, kommt es zur Vermischung verschiedener Wasserschichten (Konvektion), die das Treibhausgas in die Atmosphäre freisetzen kann. Zu dieser Jahreszeit ist die Meereisdecke brüchig und der Deckel auf dem Ozean ist zu großen Teilen abgeschmolzen, was die Methanfreisetzung in die Atmosphäre begünstigt. Auch im Winter hält die Vermischung durch Konvektion an und Methan kann durch Risse zwischen Eisschollen weiterhin entweichen.

Die stabile Wasserschichtung verhindert weiterhin, dass das Methan in größere Tiefen des Arktischen Ozeans eingemischt wird. Deutlich geringere Methankonzentrationen (im Vergleich zur Atmosphäre) in den vom Eis unbeeinflussten tieferen Ozeanschichten belegen diesen Prozess. Das hat zweierlei zur Folge: Erstens kann der neu entdeckte und bisher unberücksichtigte oberflächennahe Feedback-Mechanismus zur direkten Freisetzung von Methan aus Meereis und Ozean in die Atmosphäre führen.

Zweitens ist der Austausch zwischen Atmosphäre und dem tieferen Arktischen Ozean reduziert. Das schränkt auch die Funktion des Arktischen Ozeans als Methansenke ein. „Die Rolle von Meereis für Gasaustausch und Gasflüsse ist also weit vielfältiger als bisher vermutet und die Prozesse im polaren Ozean unterscheiden sich stark von denen in den niederen Breiten.

Das muss in zukünftigen Klimamodellierungen berücksichtigt werden“, ordnet Mitautorin und AWI-Ozeanographin Prof. Dr. Ursula Schauer die Bedeutung der Studie ein. Außerdem werfe die Studie die Frage auf, woher das Methan ursprünglich stammt. Denkbar sei die Methanproduktion im Meereis während seiner Drift durch die Arktis oder der Transport von im Meereis eingeschlossenen Methan aus anderen Regionen.

Originalpublikation:
Ellen Damm, Bert Rudels, Ursula Schauer, Susan Mau und Gerhard Dieckmann: Methane excess in Arctic surface water-triggered by sea ice formation and melting. Nature online: Scientific Reports | 5:16179 | doi:10.1038/srep16179

Hinweise für Redaktionen:

Druckbare Bilder finden Sie unter: http://www.awi.de/nc/ueber-uns/service/presse/pressemeldung/meereis-spielt-eine-wichtige-rolle-im-arktischen-methankreislauf.html

Ihre Ansprechpartnerinnen am Alfred-Wegener-Institut sind Dr. Ellen Damm (Tel.: 0471 4831-1423; E-Mail: Ellen.Damm(at)awi.de) sowie in der Pressestelle Dr. Folke Mehrtens (Tel.: 0471 4831-2007; E-Mail: Folke.Mehrtens(at)awi.de).

Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der gemäßigten sowie hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der 18 Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Ralf Röchert | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Tumoren ordentlich einheizen
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Leberkrebs: Fettproduktion fördert Tumorbildung
12.12.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Alternativer Entstehungsprozess für Blutkrebs entschlüsselt

12.12.2017 | Biowissenschaften Chemie

Neue Beschichtung bei Industrieanlagen soll Emissionen senken

12.12.2017 | Materialwissenschaften

Zeigt her Eure Blätter - Gesundheitscheck für Stadtbäume

12.12.2017 | Biowissenschaften Chemie