Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nature: Molekülbewegungen in lebenden Zellen sehen

23.07.2013
Schnelle Bewegungen von Molekülen in lebenden Proben zu erfassen, ermöglicht die neu entwickelte STED-RICS-Mikroskopie.

Forscher am Karlsruher Institut für Technologie haben die Raster-Bild-Korrelationsspektroskopie (RICS) mit der STED-Fluoreszenzmikroskopie kombiniert.


Beim STED-RICS-Mikroskop wird die fluoreszierende Zellmembran mit einem Licht-punkt abgerastert und dadurch ein Bild aufgenommen. Abbildung: P.N. Hedde/KIT

Die Methode eröffnet neue Möglichkeiten in der medizinischen Forschung, etwa bei der Untersuchung der Dynamik von Zellmembranen auch bei hohen Proteinkonzentrationen. Im Fachmagazin „Nature Communications“ stellen die Forscher das Verfahren vor. (doi:10.1038/ncomms3093)

Wie bewegen sich einzelne Biomoleküle in lebenden Zellen, Geweben oder ganzen Organismen? Wie wirken die Biomoleküle zusammen? Die Fragen sind wesentlich, um Lebensprozesse auf molekularer Ebene besser zu verstehen. Die STED-Fluoreszenzmikroskopie ermöglicht es, Bewegungen und Wechselwirkungen von Biomolekülen in lebenden Proben räumlich und zeitlich aufgelöst zu verfolgen. Dazu werden die zu untersuchenden Strukturen mithilfe von Fluoreszenzfarbstoffen selektiv markiert; die zeitlichen Veränderungen lassen sich anschließend in Videos beobachten.

Allerdings ist die Bildfolge recht langsam, sodass sich schnelle Molekülbewegungen nicht direkt erfassen lassen. Eine Gruppe von Forschern des Karlsruher Instituts für Technologie (KIT) um Professor Gerd Ulrich Nienhaus vom Institut für Angewandte Physik (APH) und vom Center for Functional Nanostructures (CFN) stellt nun im Fachmagazin „Nature Communications“ eine neue Methode vor, um solche schnellen Molekülbewegungen in lebenden Proben zu messen.

Die neue Methode kombiniert zwei Verfahren der Mikroskopie: Mit einem konfokalen Rastermikroskop werden Fluoreszenzbilder Punkt für Punkt in festen Zeitabständen aufeinanderfolgend aufgenommen; die Bilder enthalten also eine implizite Zeitstruktur. Diese Information lässt sich mithilfe der Raster-Bild-Korrelationsspektroskopie (raster image correlation spectroscopy, RICS) nutzen, um die Dynamik von Biomolekülen, beispielsweise Proteinen, in lebenden Zell- oder Gewebeproben zu bestimmen. Allerdings sind die Proteinkonzentrationen häufig zu hoch, um RICS mit konventioneller Mikroskopie anzuwenden.

Die KIT-Forscher haben daher die RICS-Methode mit der STED-Mikroskopie (stimulated emission depletion microscopy) kombiniert. STED ermöglicht es, den zum Abrastern des Fluoreszenzbilds verwendeten Lichtpunkt erheblich zu verkleinern. Bei der Bildgebung an Zellen wurde dieses Verfahren bereits erfolgreich eingesetzt, um die höchstmögliche Auflösung zu erzielen. Bei einem STED-Mikroskop handelt es sich um ein Fluoreszenzmikroskop, dessen Auflösung nicht durch das Abbe-Limit begrenzt ist.

Durch die Kombination der Raster-Bild-Korrelationsspektroskopie mit der STED-Mikroskopie haben die KIT-Forscher es nun ermöglicht, die Moleküldynamik innerhalb von biologischen Strukturen aus den gewonnenen Rasterbildern zu quantifizieren. „Das heißt, mit der STED-RICS-Methode lässt sich aus jedem Fluoreszenzbild eine hochaufgelöste Karte der Anzahl und Beweglichkeit der fluoreszenzmarkierten Moleküle innerhalb des vom Abtastpunkt erfassten Raumgebiets erstellen“, erklärt Gerd Ulrich Nienhaus.

In der Arbeitsgruppe von Professor Nienhaus arbeiten Physiker, Chemiker und Biologen zusammen. Diese interdisziplinäre Kompetenz ist erforderlich, um die verschiedenen Aspekte bei der Entwicklung neuer mikroskopischer Instrumente und Methoden für Untersuchungen in der biophysikalischen Grundlagenforschung abzudecken. Wenn es um die Anwendung geht, arbeitet die Gruppe häufig mit weiteren Forschern am KIT zusammen, die ihr Wissen über molekulare Prozesse einbringen – im Fall der STED-RICS-Methode mit Wissenschaftlern des Instituts für Toxikologie und Genetik (ITG) sowie der Abteilung für Zell- und Entwicklungsbiologie des Zoologischen Instituts.

Die STED-RICS-Methode eröffnet neue Messmöglichkeiten in den Lebenswissenschaften. Ein wichtiges Anwendungsfeld ist die Erforschung der Dynamik von Zellmembranen. In die Membranen ist eine Vielzahl von Rezeptorproteinen eingebettet, die durch Wechselwirkung mit von außen andockenden Ligandenmolekülen externe Signale ins Zellinnere weiterleiten. Mit STED-RICS können Forscher nun Bewegungen sowohl der Lipide als auch der Rezeptoren präzise und quantitativ bestimmen. Das Verständnis dieser Prozesse ist für die medizinische und pharmazeutische Forschung äußerst wichtig: Viele pharmazeutische Wirkstoffe basieren auf der Beeinflussung dieser Wechselwirkungen. „Etwa jedes zweite Medikament beeinflusst beispielsweise die Signaltransduktion von G-Protein-gekoppelten Rezeptoren, einer wichtigen Subklasse“, erklärt Professor Nienhaus.

Per Niklas Hedde, René M. Dörlich, Rosmarie Blomley, Dietmar Gradl, Emmanuel Oppong, Andrew C.B. Cato & G. Ulrich Nienhaus: Stimulated emission depletion-based raster image correlation spectroscopy reveals biomolecular dynamics in live cells. Nature Communications 4. 2013. Article number: 2093. doi:10.1038/ncomms3093.

Weiterer Kontakt:
Kosta Schinarakis; PKM – Themenscout
Tel.: +49 721 608 41956; E-Mail:schinarakis@kit.edu
Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Thematische Schwerpunkte der Forschung sind Energie, natürliche und gebaute Umwelt sowie Gesellschaft und Technik, von fundamentalen Fragen bis zur Anwendung. Mit rund 9000 Mitarbeiterinnen und Mitarbeitern, darunter knapp 6000 in Wissenschaft und Lehre, sowie 24 000 Studierenden ist das KIT eine der größten Forschungs- und Lehreinrichtungen Europas. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Monika Landgraf | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise