Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nature Genetics: 1001 Genom-Projekt – auf dem Weg zum kompletten Erbgut-Katalog von Arabidopsis

29.08.2011
Max-Planck-Institut und Universität Hohenheim in Nature Genetics

Aufsatz „Whole-genome sequencing of multiple Arabidopsis thaliana populations” in der Zeitschrift Nature Genetics 10/2011

Menschen können neue Technologien entwickeln und Tiere in andere Regionen abwandern, Pflanzen aber sind an ihren Standort gebunden. Dennoch haben sie Möglichkeiten gefunden, ihr Überleben zu sichern. So auch die Ackerschmalwand, die auf der gesamten Nordhalbkugel zu finden ist. Um herauszufinden, wie sich diese unscheinbare Pflanze ganz verschiedenen Extrembedingungen anpasst, wurde 2008 das 1001 Genom-Projekt ins Leben gerufen, an dem sich weltweit elf Forschungsinstitute beteiligen. Forscher des Max-Planck-Instituts in Tübingen und der Universität Hohenheim sind bei der Untersuchung des Erbguts von etwa hundert Stämmen dieser Pflanze aus verschiedenen Regionen auf eine immense Zahl von Variationen gestoßen. Es ist vermutlich diese große Flexibilität des Erbmaterials, das diese Pflanzen besonders anpassungsfähig macht. Der komplette Katalog der Genom- und Genproduktvariationen einer Art kann mittelfristig Anwendung in der modernen Pflanzenzüchtung finden.

Welche Gene und Genvarianten erlauben es Individuen ein und derselben Art, unter ganz unterschiedlichen Umweltbedingungen zu gedeihen? Die Modellpflanze der Genetik, die Ackerschmalwand, Arabidopsis thaliana, eignet sich besonders gut für die Untersuchung dieser Frage. Sie kommt mit der Hitze und Trockenheit im Norden Afrikas ebenso gut zurecht wie mit der Kälte im zentralasiatischen Hochland oder den gemäßigten Zonen in Europa. Mal ist es eine großblättrige Pflanze, mal ist sie klein und zierlich, doch immer ist es die gleiche Art. Die Antwort liegt ohne Zweifel in der Vielfalt des Erbguts. Forscher um Detlef Weigel und Karsten Borgwardt vom Max-Planck-Institut für Entwicklungsbiologie, Gunnar Rätsch vom Friedrich-Miescher-Laboratorium in Tübingen sowie Karl Schmid von der Universität Hohenheim haben jetzt zusammen mit einem internationalen Team das Genom von verschiedenen Ackerschmalwand-Stämmen aus ganz Europa und Asien sequenziert. Um die Auswirkung von geographischen Entfernungen auf die Gene zu enthüllen, wählten sie zum einen Individuen aus, die ganz in der Nähe wachsen – beispielsweise im schwäbischen Neckartal – sowie Pflanzen, die an entgegengesetzten Enden des Verbreitungsgebiets vorkommen, wie Nordafrika oder Zentralasien.

Durch die nahezu vollständige Aufklärung von 100 Genomen dieser einen Pflanzenart sollen grundlegende Erkenntnisse über die Evolution gewonnen werden – die Forscher sehen darin den Aufbruch in eine neue Ära der Genetik. Tausende von Proteinen unterscheiden sich in Form und Aktivität in den verschiedenen Arabidopsis-Stämmen. Darüber hinaus fanden die Wissenschaftler mehrere Tausend Fälle von zusätzlichen Genkopien und Genverlusten, aber auch neue Gene, die bisher nur in anderen Pflanzenarten zu finden waren. „Aus unseren Ergebnissen wurde eindrucksvoll deutlich, wie ausgeprägt die genetische Variabilität ist“, sagt Jun Cao vom Max-Planck-Institut für Entwicklungsbiologie und Erstautor einer der Studien. Karl Schmid von der Universität Hohenheim setzt hinzu: „Die Anpassung durch neu entstandene Mutationen ist sehr selten. Viel wichtiger ist die Neukombination bereits vorhandener Varianten. Mit der Information von über hundert Genomen können wir nicht nur Aussagen über diese hundert Individuen treffen, sondern haben damit auch den Grundstein gelegt, um vorherzusagen, welches genetische Potenzial durch Kreuzungen verschiedener Individuen geweckt werden kann.“

Die Genetiker um Detlef Weigel, Karsten Borgwardt und Karl Schmid fanden auch heraus, dass sich die Anzahl der genetischen Variationen in den einzelnen Regionen des Verbreitungsgebiets stark unterscheidet. Die größte genetische Vielfalt fanden die Forscher auf der Iberischen Halbinsel, wo die Art schon sehr lange vorkommt. In Zentralasien, das erst nach der letzten Eiszeit besiedelt wurde, haben die Arabidopsis-Pflanzen vergleichsweise einheitliche Genome. Diese enthalten zudem überdurchschnittlich viele Mutationen, die mit Nachteilen für die Pflanze verbunden sind, weil sie etwa die Funktion von Proteinen verändern. Normalerweise entfernt die natürliche Selektion diese Mutationen im Lauf der Zeit, aber in jungen Auswandererpopulationen sind sie durch zufällige Evolution angereichert. Herauszufinden wie Pflanzen und ihre Genome sich an ihre Umgebung anpassen, ist wie ein Puzzle zusammenzusetzen“, erklärt Jun Cao. „Wir müssen alle Stücke sammeln, bevor wir sie aneinanderfügen können.“ Die Wissenschaftler haben es geschafft, einen nahezu kompletten Katalog der Genomvariationen einer Art zu erstellen.

Zusammenspiel der Gene

Wie jedoch diese Variationen auf molekularer Ebene zusammenwirken und zu welchen Veränderungen sie in Genprodukten führen, wurde detailliert von Bioinformatiker Gunnar Rätsch am Friedrich-Miescher-Laboratorium und internationalen Kollegen in einer zweiten Studie untersucht. Sie analysierten 19 Arabidopsis-Stämme mit besonders großer genetischer Variabilität. Diese 19 Individuen bildeten den Grundstock für eine künstliche Population von mehreren Hundert Stämmen, die durch mehrfache Kreuzungen entstanden ist. Dabei werden systematisch verschiedene Genomstücke zusammengewürfelt. In den entstandenen Individuen lässt sich das Zusammenspiel der Gene besonders gut untersuchen.

Die Wissenschaftler haben diese Genomstücke mithilfe neuartiger Analysemethoden untersucht und herausgefunden, wie die DNA im Einzelnen abgelesen und in die Zwischenstufe der Proteinherstellung, die RNA, umgesetzt wird. Dabei fielen ihnen Genabschnitte auf, die abhängig vom genomischen Kontext stillgelegt oder reaktiviert wurden. „Im einzelnen Gen finden in kurzer Zeit überraschend viele Veränderungen statt. Sie werden aber häufig insgesamt wieder kompensiert, so dass zunächst von außen nahezu keine Auswirkungen zu erkennen sind“, fasst Gunnar Rätsch die neuen Ergebnisse zusammen. Die Konzepte, Methoden und Plattformen, die auf Basis der Genomvariationen von Arabidopsis entwickelt werden, können auch verwendet werden, um Nutzpflanzen zu erforschen und einer schnellen, exakten Zuordnung und Kartierung von wünschenswerten Eigenschaften in Pflanzen dienen. Darüber hinaus können Forscher die Erkenntnisse über den Einfluss von Variationen auf die Genprodukte und ihr Zusammenwirken auch auf Untersuchungen am menschlichen Genom übertragen.

Die neuen Arbeiten sind auch im Rahmen des 1001 Genom-Projekt zu sehen. Das Projekt wurde 2008 vom Max-Planck-Institut für Entwicklungsbiologie ins Leben gerufen und wird in Kooperation mit zehn weiteren Instituten weltweit in vielen Einzelprojekten umgesetzt. Ziel ist die Analyse und der Vergleich der Gene von 1001 verschiedenen Arabidopsis-Stämmen. In dem Großprojekt sollen grundlegende Erkenntnisse über die Evolution, über die Genetik und über molekulare Mechanismen gewonnen werden. Fast 500 Genome wurden an den unterschiedlichen Instituten bereits sequenziert und analysiert. Die Daten werden in eine öffentliche Datenbank eingespeist und können so nicht nur den Kooperationspartnern, sondern allen interessierten Wissenschaftlern als Quelle dienen.

Originalpublikationen:
Cao, J., Schneeberger, K., Ossowski, S., Günther, T., Bender, S., Fitz, J., Koenig, D., Lanz, C., Stegle, O., Lippert, C., Wang, X., Ott, F., Müller, J., Alonso-Blanco, C., Borgwardt, K., Schmid, K. J., and Weigel, D. (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nature Genetics, doi:

Gan X., Stegle O., Behr J., Steffen J.G., Drewe P., Hildebrand K.L., Lyngsoe R., Schultheiss S.J., Osborne E.J., Sreedharan V.T., Kahles A., Bohnert R., Jean G., Derwent P., Kersey P., Belfield E.J., Harberd N.P., Kemen E., Toomajian C., Kover P.X., Clark R.M., Rätsch G., Mott R. (2011) Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature, doi: 10.1038/nature10414.

Schneeberger, K., Ossowski, S., Ott, F., Klein, J. D., Wang, X., Lanz, C., Smith, L. M., Cao, J., Fitz, J., Warthmann, N., Henz, S. R., Huson, D. H., and Weigel, D. (2011) Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proceedings of the National Acadademy of Sciences of USA 108, 10249-10254, doi: 10.1073/pnas.1107739108.

Ansprechpartner:
Prof. Dr. Detlef Weigel
Max-Planck-Institut für Entwicklungsbiologie
Tel.: 07071 601-1410
E-Mail: detlef.weigel@tuebingen.mpg.de
Dr. Gunnar Rätsch
Friedrich-Miescher-Laboratorium der Max-Planck-Gesellschaft
Tel.: 07071 601-820
E-Mail: gunnar.raetsch@tuebingen.mpg.de
Prof. Dr. Karl Schmid
Universität Hohenheim
Tel.: 0711 459-23487
E-Mail: karl.schmid@uni-hohenheim.de

Florian Klebs | idw
Weitere Informationen:
http://www.1001genomes.org/
http://mus.well.ox.ac.uk/19genomes/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

nachricht Ionen gegen Herzrhythmusstörungen – Nicht-invasive Alternative zu Katheter-Eingriff
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie

Vom Feld in die Schule: Aktuelle Forschung zu moderner Landwirtschaft für den Unterricht

23.01.2017 | Bildung Wissenschaft

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungsnachrichten