Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nature Com.: Synthesechemie auf kleinstem Raum

14.06.2016

Auf engstem Raum in kurzer Zeit eine große Zahl von chemischen Reaktionen systematisch testen: Mit einem neuen Verfahren des KIT wird dies nun möglich. Es erlaubt frei wählbare, in feste Materialien eingebettete Moleküle in nanometerkleinen Bereichen miteinander zur Reaktion zu bringen. Da nun die eingesetzten Chemikalien sehr genau dosiert werden können, ermöglicht es eine effiziente und materialsparende Suche nach Synthesewegen, die die beteiligten Wissenschaftler nun in der Fachpublikation Nature Communications vorstellen. DOI 10.1038/NCOMMS11844

„Bei allen chemischen Synthesen muss ein Baustein A mit einem Baustein B im Lösungsmittel X vermengt werden, so dass sie miteinander reagieren können, dies ist sehr mühevoll und zeitraubend“, erläutert Frank Breitling, Forschungsgruppenleiter am Institut für Mikrostrukturtechnik des KIT.


Auf nanometergroße Strukturen laufen beim cLIFT-Verfahren parallel unterschiedliche chemische Reaktionen ab und erzeugen, wie hier im Bild, ein Farbsignal.

Bild: KIT

Bevor ein neuer Syntheseweg gefunden ist, müssen sehr viele verschiedene Arten von chemischen Bausteinen, Katalysatoren, Lösungsmitteln oder Aktivatoren in unterschiedlichen Mischungsverhältnissen ausprobiert werden. Oftmals erweist sich erst in einem sehr späten Syntheseschritt, dass der ausprobierte Reaktionsweg nicht zum Erfolg führt und teure Chemikalien vergeblich verbraucht wurden.

„Wir miniaturisieren dieses Verfahren, so dass wir nicht auf herkömmliche Weise aufwendig Schritt für Schritt gehen müssen, sondern auf kleinstem Raum viele Reaktionen zugleich stattfinden lassen können“, sagt Alexander Nesterov-Müller, der ebenfalls am Institut für Mikrostrukturtechnik forscht und als außerplanmäßiger Professor an der Fakultät für Maschinenbau lehrt. In Frage kommen dafür alle Moleküle, die sich an einen Trägerstoff koppeln lassen.

Der Physiker Nesterov-Müller und der Biochemiker Breitling haben in ihren Arbeitsgruppen eine Maschine konstruiert, mit der nanometerdünne Schichten verschiedener fester Materialien mit eingebetteten Reaktionsmolekülen automatisiert über- und nebeneinander geschichtet werden können.

Sogenannte Spots, winzige, in ihrer Größe genau bestimmbare Bereiche, werden dafür aus der nur ein Tausendstel Millimeter dünnen, wiederverwendbaren Materialschicht mit Hilfe eines Lasers ausgestanzt und auf den Syntheseträger übertragen. Durch Zufuhr von Hitze oder Lösungsmitteln verflüssigen sich diese Materialschichten, sodass die darin befindlichen chemischen Bausteine sich - wie beim konventionellen Syntheseverfahren - durchmischen und miteinander reagieren.

Untersucht haben die Wissenschaftler das cLIFT (combinatorial Laser-induced forward transfer)-Verfahren am Beispiel der Synthese von Peptiden - kurzen Aminosäureketten. Aufgrund der sehr hohen Dichte der Peptid-Arrays genannten Untersuchungsfelder und durch die Vielzahl möglicher Kombinationen unterschiedlicher Aminosäure-Bausteine auf engstem Raum lässt sich in kurzer Zeit systematisch eine große Zahl von chemischen Reaktionen testen. Derzeit erreicht die Maschine 50.000 solcher übereinander gestapelter Materialspots pro Glasobjektträger, dies entspricht 5.000 pro Quadratzentimeter.

Ein Ziel der neuen Technik könnte es sein, das Immunsystem auszulesen und Antikörper im menschlichen Blutserum schneller und einfacher aufzuspüren, um zum Beispiel veränderte Aminosäuren bei Rheumapatienten zu erkennen. Auch die Malariaforschung sowie die Therapie bei Multipler Sklerose könnten von der Methode profitieren. „Unser Verfahren dient in erster Linie als Forschungswerkzeug“, so Breitling. Aber auch für Pharmafirmen ist es interessant, etwa um neue Antigene für die Entwicklung von Impfstoffen zu finden. Eine weitere Zukunftsvision ist es, Datenbanken aufzubauen, die Forschern über bereits erfolgreiche Synthesewege Auskunft geben.

In interdisziplinärer Kooperation mit der Arbeitsgruppe von Stefan Bräse am Institut für Organische Chemie des KIT wollen die Wissenschaftler das Verfahren auf möglichst viele Arten von chemischen Synthesen ausweiten. Für eine künftige kommerzielle Anwendung soll die Maschine noch schneller und bedienungsfreundlicher werden sowie weiter miniaturisiert werden.

Das neue Verfahren cLIFT ist als eines der Ergebnisse im Rahmen eines ERC-Grants des Europäischen Forschungsrates (ERC) entstanden, in dem Alexander Nesterov-Müller interdisziplinär Methoden zur kombinatorischen Synthese in Arrayformat entwickelte.

Felix F. Loeffler, et al., High-flexibility combinatorial peptide synthesis with laser-based transfer of monomers in solid matrix material; Nature Communications, DOI: 10.1038/NCOMMS11844

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Monika Landgraf | Karlsruher Institut für Technologie
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kontinentalrand mit Leckage
27.03.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Neuen molekularen Botenstoff bei Lebererkrankungen entdeckt
27.03.2017 | Universitätsmedizin Mannheim

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE