Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nature Com.: Synthesechemie auf kleinstem Raum

14.06.2016

Auf engstem Raum in kurzer Zeit eine große Zahl von chemischen Reaktionen systematisch testen: Mit einem neuen Verfahren des KIT wird dies nun möglich. Es erlaubt frei wählbare, in feste Materialien eingebettete Moleküle in nanometerkleinen Bereichen miteinander zur Reaktion zu bringen. Da nun die eingesetzten Chemikalien sehr genau dosiert werden können, ermöglicht es eine effiziente und materialsparende Suche nach Synthesewegen, die die beteiligten Wissenschaftler nun in der Fachpublikation Nature Communications vorstellen. DOI 10.1038/NCOMMS11844

„Bei allen chemischen Synthesen muss ein Baustein A mit einem Baustein B im Lösungsmittel X vermengt werden, so dass sie miteinander reagieren können, dies ist sehr mühevoll und zeitraubend“, erläutert Frank Breitling, Forschungsgruppenleiter am Institut für Mikrostrukturtechnik des KIT.


Auf nanometergroße Strukturen laufen beim cLIFT-Verfahren parallel unterschiedliche chemische Reaktionen ab und erzeugen, wie hier im Bild, ein Farbsignal.

Bild: KIT

Bevor ein neuer Syntheseweg gefunden ist, müssen sehr viele verschiedene Arten von chemischen Bausteinen, Katalysatoren, Lösungsmitteln oder Aktivatoren in unterschiedlichen Mischungsverhältnissen ausprobiert werden. Oftmals erweist sich erst in einem sehr späten Syntheseschritt, dass der ausprobierte Reaktionsweg nicht zum Erfolg führt und teure Chemikalien vergeblich verbraucht wurden.

„Wir miniaturisieren dieses Verfahren, so dass wir nicht auf herkömmliche Weise aufwendig Schritt für Schritt gehen müssen, sondern auf kleinstem Raum viele Reaktionen zugleich stattfinden lassen können“, sagt Alexander Nesterov-Müller, der ebenfalls am Institut für Mikrostrukturtechnik forscht und als außerplanmäßiger Professor an der Fakultät für Maschinenbau lehrt. In Frage kommen dafür alle Moleküle, die sich an einen Trägerstoff koppeln lassen.

Der Physiker Nesterov-Müller und der Biochemiker Breitling haben in ihren Arbeitsgruppen eine Maschine konstruiert, mit der nanometerdünne Schichten verschiedener fester Materialien mit eingebetteten Reaktionsmolekülen automatisiert über- und nebeneinander geschichtet werden können.

Sogenannte Spots, winzige, in ihrer Größe genau bestimmbare Bereiche, werden dafür aus der nur ein Tausendstel Millimeter dünnen, wiederverwendbaren Materialschicht mit Hilfe eines Lasers ausgestanzt und auf den Syntheseträger übertragen. Durch Zufuhr von Hitze oder Lösungsmitteln verflüssigen sich diese Materialschichten, sodass die darin befindlichen chemischen Bausteine sich - wie beim konventionellen Syntheseverfahren - durchmischen und miteinander reagieren.

Untersucht haben die Wissenschaftler das cLIFT (combinatorial Laser-induced forward transfer)-Verfahren am Beispiel der Synthese von Peptiden - kurzen Aminosäureketten. Aufgrund der sehr hohen Dichte der Peptid-Arrays genannten Untersuchungsfelder und durch die Vielzahl möglicher Kombinationen unterschiedlicher Aminosäure-Bausteine auf engstem Raum lässt sich in kurzer Zeit systematisch eine große Zahl von chemischen Reaktionen testen. Derzeit erreicht die Maschine 50.000 solcher übereinander gestapelter Materialspots pro Glasobjektträger, dies entspricht 5.000 pro Quadratzentimeter.

Ein Ziel der neuen Technik könnte es sein, das Immunsystem auszulesen und Antikörper im menschlichen Blutserum schneller und einfacher aufzuspüren, um zum Beispiel veränderte Aminosäuren bei Rheumapatienten zu erkennen. Auch die Malariaforschung sowie die Therapie bei Multipler Sklerose könnten von der Methode profitieren. „Unser Verfahren dient in erster Linie als Forschungswerkzeug“, so Breitling. Aber auch für Pharmafirmen ist es interessant, etwa um neue Antigene für die Entwicklung von Impfstoffen zu finden. Eine weitere Zukunftsvision ist es, Datenbanken aufzubauen, die Forschern über bereits erfolgreiche Synthesewege Auskunft geben.

In interdisziplinärer Kooperation mit der Arbeitsgruppe von Stefan Bräse am Institut für Organische Chemie des KIT wollen die Wissenschaftler das Verfahren auf möglichst viele Arten von chemischen Synthesen ausweiten. Für eine künftige kommerzielle Anwendung soll die Maschine noch schneller und bedienungsfreundlicher werden sowie weiter miniaturisiert werden.

Das neue Verfahren cLIFT ist als eines der Ergebnisse im Rahmen eines ERC-Grants des Europäischen Forschungsrates (ERC) entstanden, in dem Alexander Nesterov-Müller interdisziplinär Methoden zur kombinatorischen Synthese in Arrayformat entwickelte.

Felix F. Loeffler, et al., High-flexibility combinatorial peptide synthesis with laser-based transfer of monomers in solid matrix material; Nature Communications, DOI: 10.1038/NCOMMS11844

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Monika Landgraf | Karlsruher Institut für Technologie
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie