Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Natürliche Uranverbindungen mobiler als bislang angenommen

18.12.2013
Das radioaktive Element Uran kann sich in sumpfigen Wiesen sammeln. Dort verwandelt es sich in das Mineral Uraninit, wodurch der Stoff verfestigt wird.

Viele Forscher nehmen an, dass das Actinid so von der Biosphäre ferngehalten werden kann. In einem französischen Feuchtgebiet, in dem hohe Urankonzentrationen entdeckt wurden, untersuchten nun Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen die Mobilität der Substanz.


Mithilfe der Laser-Fluoreszenz-Spektroskopie kann Dr. Gerhard Geipel (rechts) die unterschiedlichen Formen, in denen der radioaktive Stoff Uran vorkommt, genau bestimmen.

Rainer Weisflog

Wie sie feststellten, kann das Element auch im festen Zustand Verbindungen eingehen, die das Uran in den biologischen Kreislauf bringen. Die Ergebnisse haben die Forscher in der Fachzeitschrift Nature Communications veröffentlicht.

„Obwohl Uran radioaktiv ist, ist es für Mensch und Umwelt nicht zwangsläufig gefährlich“, erläutert der Leiter der Abteilung Biogeochemie am HZDR, Dr. Gerhard Geipel. „Selbst in normalen Böden finden wir es häufig. Es kommt deswegen vielmehr darauf an, in welcher Menge und vor allem in welcher Form es auftritt. Hohe Konzentrationen lassen sich zum Beispiel in Feuchtgebieten feststellen, die es wie ein Guss auffangen.“ Da der radioaktive Stoff hier in den meisten Fällen aber als vierwertiges Uran(IV) vorkommt, das sich durch die Wechselwirkung mit Sauerstoff in das Mineral Uraninit verwandelt, galt dies bislang nicht unbedingt als Problem, da es in diesem Zustand als kaum löslich angesehen wurde und somit keine Gefahr für die biologischen Kreisläufe darstellte. Die Untersuchung eines sumpfigen Grasgebietes in der zentralfranzösischen Region Limousin, das durch Uranbergbau kontaminiert ist, könnte diese Annahme nun widerlegen.

Die Forscher um Dr. Yuheng Wang von der EPFL entnahmen an verschiedenen Stellen Wasserproben aus den Abflüssen des Feuchtgebietes. Die Analyse ergab, dass das Uran in den Strömen tatsächlich befördert wurde. Dies lieferte den Wissenschaftlern allerdings noch keine Anhaltspunkte, um welche Art des radioaktiven Elements es sich dabei handelte. Denn das sechswertige Uran(VI) – neben Uran(IV) die zweite Form, in der der radioaktive Stoff unter natürlichen Umständen vorkommt – ist gut löslich und kann dadurch leicht in die Biosphäre aufgenommen werden. „An dieser Stelle kommt das HZDR ins Spiel“, erzählt Geipel. „Die Uranmenge können wir relativ schnell und einfach mit analytischen Methoden feststellen. Schwieriger wird es, den Zustand des Elements zu bestimmen. Und genau darum ging es uns ja.“

Die chemischen Verbindungen, die das Uran eingeht, lassen sich mit der sogenannten Speziationsanalyse entschlüsseln. Über die höchste Kompetenz bei der Uranspektroskopie und die nötige Technik verfügen in Deutschland die Forscher des HZDR. Die Dresdner Wissenschaftler haben dafür eine Wasserprobe aus dem Feuchtgebiet eingefroren und mit Lasern bestrahlt. Denn der radioaktive Stoff lässt sich auf diese Weise zum Leuchten anregen. „Anhand der Spektren und Fluoreszenzlebensdauer, die sich für die beiden Formen des Urans unterscheiden, konnten wir feststellen, dass es sich bei den Vorkommen im Wasser um Uran(IV) handelt“, berichtet Geipel. „Daraus können wir schließen, dass dieser Zustand des radioaktiven Stoffes nicht so immobil ist, wie wir bislang angenommen haben.“

Wie die Untersuchung herausgestellt hat, verändert sich das Uran(IV) nicht zwangsläufig zu Uraninit, sondern kann sich an ein feines Partikelgemisch aus Eisen, Aluminium, Phosphor und Silicium binden. Auf diese Weise formen sich Teilchen, die das Uran in die Wasserströme tragen. „Diese Ergebnisse müssen wir nun natürlich beachten, wenn wir beispielsweise bei Sanierungsmaßnahmen im Uranbergbau Grasflächen einsetzen wollen“, erläutert Geipel die Konsequenzen aus der Untersuchung. „Auch in seinem festen Zustand ist Uran nicht immer immobilisiert, könnte deshalb in die Biosphäre gelangen und somit weitere Gebiete kontaminieren.“

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de/presse/uran_wiesen

Weitere Berichte zu: Biosphäre Feuchtgebiet HZDR Mineral Uran Uranbergbau Uraninit Uranverbindungen Wasserprobe

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält
22.05.2017 | Ruhr-Universität Bochum

nachricht Myrte schaltet „Anstandsdame“ in Krebszellen aus
22.05.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie