Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Natürliche Uranverbindungen mobiler als bislang angenommen

18.12.2013
Das radioaktive Element Uran kann sich in sumpfigen Wiesen sammeln. Dort verwandelt es sich in das Mineral Uraninit, wodurch der Stoff verfestigt wird.

Viele Forscher nehmen an, dass das Actinid so von der Biosphäre ferngehalten werden kann. In einem französischen Feuchtgebiet, in dem hohe Urankonzentrationen entdeckt wurden, untersuchten nun Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen die Mobilität der Substanz.


Mithilfe der Laser-Fluoreszenz-Spektroskopie kann Dr. Gerhard Geipel (rechts) die unterschiedlichen Formen, in denen der radioaktive Stoff Uran vorkommt, genau bestimmen.

Rainer Weisflog

Wie sie feststellten, kann das Element auch im festen Zustand Verbindungen eingehen, die das Uran in den biologischen Kreislauf bringen. Die Ergebnisse haben die Forscher in der Fachzeitschrift Nature Communications veröffentlicht.

„Obwohl Uran radioaktiv ist, ist es für Mensch und Umwelt nicht zwangsläufig gefährlich“, erläutert der Leiter der Abteilung Biogeochemie am HZDR, Dr. Gerhard Geipel. „Selbst in normalen Böden finden wir es häufig. Es kommt deswegen vielmehr darauf an, in welcher Menge und vor allem in welcher Form es auftritt. Hohe Konzentrationen lassen sich zum Beispiel in Feuchtgebieten feststellen, die es wie ein Guss auffangen.“ Da der radioaktive Stoff hier in den meisten Fällen aber als vierwertiges Uran(IV) vorkommt, das sich durch die Wechselwirkung mit Sauerstoff in das Mineral Uraninit verwandelt, galt dies bislang nicht unbedingt als Problem, da es in diesem Zustand als kaum löslich angesehen wurde und somit keine Gefahr für die biologischen Kreisläufe darstellte. Die Untersuchung eines sumpfigen Grasgebietes in der zentralfranzösischen Region Limousin, das durch Uranbergbau kontaminiert ist, könnte diese Annahme nun widerlegen.

Die Forscher um Dr. Yuheng Wang von der EPFL entnahmen an verschiedenen Stellen Wasserproben aus den Abflüssen des Feuchtgebietes. Die Analyse ergab, dass das Uran in den Strömen tatsächlich befördert wurde. Dies lieferte den Wissenschaftlern allerdings noch keine Anhaltspunkte, um welche Art des radioaktiven Elements es sich dabei handelte. Denn das sechswertige Uran(VI) – neben Uran(IV) die zweite Form, in der der radioaktive Stoff unter natürlichen Umständen vorkommt – ist gut löslich und kann dadurch leicht in die Biosphäre aufgenommen werden. „An dieser Stelle kommt das HZDR ins Spiel“, erzählt Geipel. „Die Uranmenge können wir relativ schnell und einfach mit analytischen Methoden feststellen. Schwieriger wird es, den Zustand des Elements zu bestimmen. Und genau darum ging es uns ja.“

Die chemischen Verbindungen, die das Uran eingeht, lassen sich mit der sogenannten Speziationsanalyse entschlüsseln. Über die höchste Kompetenz bei der Uranspektroskopie und die nötige Technik verfügen in Deutschland die Forscher des HZDR. Die Dresdner Wissenschaftler haben dafür eine Wasserprobe aus dem Feuchtgebiet eingefroren und mit Lasern bestrahlt. Denn der radioaktive Stoff lässt sich auf diese Weise zum Leuchten anregen. „Anhand der Spektren und Fluoreszenzlebensdauer, die sich für die beiden Formen des Urans unterscheiden, konnten wir feststellen, dass es sich bei den Vorkommen im Wasser um Uran(IV) handelt“, berichtet Geipel. „Daraus können wir schließen, dass dieser Zustand des radioaktiven Stoffes nicht so immobil ist, wie wir bislang angenommen haben.“

Wie die Untersuchung herausgestellt hat, verändert sich das Uran(IV) nicht zwangsläufig zu Uraninit, sondern kann sich an ein feines Partikelgemisch aus Eisen, Aluminium, Phosphor und Silicium binden. Auf diese Weise formen sich Teilchen, die das Uran in die Wasserströme tragen. „Diese Ergebnisse müssen wir nun natürlich beachten, wenn wir beispielsweise bei Sanierungsmaßnahmen im Uranbergbau Grasflächen einsetzen wollen“, erläutert Geipel die Konsequenzen aus der Untersuchung. „Auch in seinem festen Zustand ist Uran nicht immer immobilisiert, könnte deshalb in die Biosphäre gelangen und somit weitere Gebiete kontaminieren.“

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de/presse/uran_wiesen

Weitere Berichte zu: Biosphäre Feuchtgebiet HZDR Mineral Uran Uranbergbau Uraninit Uranverbindungen Wasserprobe

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen
12.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik