Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nasenatmung kontrolliert Hirnrhythmen

02.05.2017

Wissenschaftler der Medizinischen Fakultät der Universität Heidelberg haben in Zusammenarbeit mit dem Hirnforschungsinstitut in Natal (Brasilien) nachgewiesen, dass die elektrische Aktivität in weiten Bereichen des Mäusegehirns vom Rhythmus der Nasenatmung beeinflusst wird. Die dabei entstehenden langsamen Hirnwellen werden mit schnellen Hirnwellen verknüpft, die für Leistungen wie Gedächtnisbildung und räumliche Orientierung verantwortlich sind. Die Forschungsergebnisse wurden nun in der Zeitschrift „Proceedings of the National Academy of Sciences of the United States” veröffentlicht.

Anwender von jahrtausendealten Entspannungstechniken wie zum Beispiel Yoga sind überzeugt davon, dass das Atmen durch die Nase die Konzentrationsfähigkeit und das Reaktionsvermögen verbessert und sich allgemein positiv auf das Wohlbefinden auswirkt.


Kontrollierte Nasenatmung spielt eine wichtige Rolle bei Entspannungstechniken wie Yoga. Heidelberger Hirnforscher sind den wissenschaftlichen Grundlagen auf der Spur.

GettyImages

Ein Wissenschaftlerteam des Instituts für Physiologie und Pathophysiologie der Medizinischen Fakultät der Universität Heidelberg unter Leitung von Prof. Andreas Draguhn und Dr. Jurij Brankačk in Zusammenarbeit mit Prof. Adriano Tort vom Hirnforschungsinstitut in Natal (Brasilien) hat nun gezeigt, dass es möglicherweise eine wissenschaftliche Grundlage für die Meditationstechniken gibt:

Bei Mäusen und Ratten entsteht bei der Nasenatmung ein elektrischer Hirnrhythmus, an den schnelle Hirnwellen – sogenannte Gamma-Oszillationen – gekoppelt sind. „Gamma-Oszillationen werden mit Aufmerksamkeits- und Gedächtnisprozessen in Zusammenhang gebracht und der Nachweis, dass die Atmung durch die Nase diese beeinflussen kann, gibt wichtige Hinweise darauf, dass die Atmung sich auf kognitive Funktionen auswirkt“, sagt Prof. Andreas Draguhn.

Wissenschaftler sprechen von Oszillationen, wenn sich Gruppen von Neuronen auf einen gleichen Takt einschwingen – vergleichbar mit einem Konzertpublikum, das chaotisch beginnt, aber schließlich rhythmisch klatscht. Diese Schwingungen können mit dem EEG registriert werden und werden mit unterschiedlichen mentalen Zuständen in Verbindung gebracht. Der Sinn der Kopplung von schnellen mit langsamen Wellen könnte eine zeitliche Koordinierung der örtlich begrenzten, schnellen Wellen durch die langsamen Wellen über weite Hirnbereiche sein.

„Lernen, Gedächtnis und Handlungsentscheidungen sind in verschiedenen Hirnstrukturen angesiedelt und erfordern die zeitliche Koordinierung der Aktivität mehrerer Hirngebiete. Die Forschung steht hier jedoch noch am Anfang. Wir haben nur Hypothesen davon, was die Befunde funktionell bedeuten könnten“, so Dr. Jurij Brankačk.

Der Nase nach: schnelle Hirnwellen werden in zahlreichen Arealen ausgelöst
Bisher wurde angenommen, dass die atemsynchronen Wellen ausschließlich in Hirnbereichen auftreten, die auf Riechen und Schnüffeln spezialisiert sind. Das deutsch-brasilianische Forscherteam hat nun gezeigt, dass der durch Nasenatmung entstehende Rhythmus auch in zahlreichen weiteren Hirnarealen auftritt. Dazu gehören die präfrontale Hirnrinde, ein Gebiet, welches an Entscheidungungsfindungen und anderen Funktionen beteiligt ist, sowie der Hippokampus, eine Region, die für räumliche Navigation und Gedächtnisbildung wichtig ist.

Die Frage, warum nur die Nasen-, aber nicht die Mundatmung sich positiv auf das Denken auswirkt, ist noch nicht endgültig beantwortet. „Wir vermuten, dass es nur in der Nase Sinneszellen gibt, die auf Bewegung reagieren – also auf den Luftzug beim Atmen. Sie leiten den Reiz dann als rhythmisches Signal über den Riechkolben ins Gehirn weiter“, sagt Dr. Jurij Brankačk.

Nasenatmung „funkt“ in eigenem Frequenzbereich

Neben der großen Reichweite des Einflusses der Nasenatmung ergab sich noch eine zweite neue Erkenntnis aus der Analyse der Wissenschaftler: Bekannt war schon lange, dass zugleich mit den sogenannten langsamen Theta-Wellen schnelle Gamma-Wellen im Bereich von 30 bis 80 und 120 bis180 Hertz auftreten. Die neu entdeckten, ausschließlich an den Rhythmus der Atmung gekoppelten Gamma-Wellen bewegen sich hingegen in einem anderen Frequenzbereich von ca. 80 bis 120 Hertz. „Zwei langsame Hirnrhythmen – Theta und atmungsinduzierte Wellen – verwenden offenbar verschiedene Frequenzkanäle innerhalb des Gammafrequenzbereiches, um Informationen zu übermitteln“, sagt Prof. Adriano Tort. „Das ist wichtig für das Verständnis der Mechanismen der Informationsübertragung innerhalb des Gehirns und deutet darauf hin, dass die spezifische Kopplung von Hirn-Rhythmen ein generelles Prinzip zu sein scheint.“
Die Entdeckung wurde durch die Anwendung spezieller mathematischer Analyseverfahren ermöglicht, die von Prof. Adriano Tort in den vergangenen Jahren entwickelt wurden und mit denen es möglich war, die Frequenzbereiche einzelner Wellen exakt zu trennen. Damit gelang der Nachweis, an welche langsamen Hirnwellen welche Frequenzbereiche schneller Wellen gekoppelt werden und in welchen Hirnstrukturen diese vorliegen.

Für die Wissenschaftler eröffnen sich durch die neuen Erkenntnisse eine Fülle weiterer Forschungsfelder: So stellt sich die Frage, ob weitere Hirnaktivitäten mit der Atmung in Zusammenhang stehen, inwiefern sich die Ergebnisse von der Maus auf den Menschen übertragen lassen – und was schließlich der Sinn dieser Kopplung ist.

Dr. Jurij Brankačk vermutet eine Art „Reset-Funktion“ des Gehirns, mit der sich ein Organismus durch tiefes Einatmen beruhigen und die Gehirnwellen wieder in Einklang bringen kann: „Unsere Arbeit kann eine Anregung sein, alte Meditationstechniken stärker zu untersuchen und auf eine wissenschaftliche Basis zu stellen.“

Literatur:
Zhong W, Ciatipis M, Wolfenstetter T, Jessberger J, Müller C, Ponsel S, Yanovsky Y, Brankačk J, Tort ABL, Draguhn A (2017) Selective entrainment of gamma sub-bands by different slow network oscillations. Proc Natl Acad Sci U S A. http://www.pnas.org/content/early/2017/04/05/1617249114

Kontakt:
Prof. Dr. med. Andreas Draguhn
Universität Heidelberg
Institut für Physiologie und Pathophysiologie
Abteilung Neuro- und Sinnesphysiologie
Im Neuenheimer Feld 326
69120 Heidelberg
Telefon: +49 (0) 6221 54-4057/4056
E-Mail: andreas.draguhn@physiologie.uni-heidelberg.de

Dr. Jurij Brankačk: jurij.brankack@physiologie.uni-heidelberg.de
Prof. Adriano Tort (Hirnforschungsinstitut in Natal, Brasilien): tort@neuro.ufrn.br

Weitere Informationen:

http://www.medizinische-fakultaet-hd.uni-heidelberg.de/Neuro-und-Sinnesphysiolog... Abt. Neuro- und Sinnesphysiologie, Medizinische Fakultät der Universität Heidelberg

Julia Bird | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics