Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Naschen mit Nebenwirkung

26.04.2011
Zuckerhaltige Nahrung verrät Raupen an räuberische Ameisen

Blatthaare, so genannte Trichome, dienen Pflanzen zur Abwehr von Schädlingen: als Bewegungshindernis, Falle oder Reservoir für giftige Substanzen. Die Härchen des wilden Tabaks enthalten vorzugsweise Acylzucker, die aus herkömmlichem Rohrzucker bestehen und mit verzweigtkettigen aliphatischen Säuren verknüpft sind, Substanzen, die beispielsweise dem Erbrochenen von Säuglingen seinen süßlichen Geruch verleihen.


Junge Larve des Tabakschwärmers Manduca sexta, die Blatthärchen des wilden Tabaks (Nicotiana attenuata) verspeist. MPI chemische Ökologie: Ian Baldwin, Alexander Weinhold


Eine „rough harvester“ Ameise (Pogonomyrmex rugosus) hat die Larve an ihrem Geruch erkannt und verschleppt sie in ihr Nest. Den für sie gefährlichen Geruch gibt die Raupe wegen des aus den Blatthärchen stammenden acylierten Rohrzuckers unfreiwillig ab. MPI chemische Ökologie: Ian Baldwin, Alexander Weinhold

Diese Flüssigkeit wird von winzigen, frisch geschlüpften Raupen vertilgt. Jedoch gerät den Larven das Verspeisen der Blatthaare zum Nachteil: Die Raupen entwickeln einen markanten Körpergeruch, ebenso riecht auch der Raupenkot. Max-Planck-Wissenschaftler haben entdeckt, dass Ameisen den Geruch der aliphatischen Säuren erkennen und nutzen, um ihre Beute zu finden. Die räuberischen Ameisen spüren die jungen Larven auf der Pflanze auf und entführen sie in ihren Bau, um sie dort an ihre Jungen und ihre Nestgenossen zu verfüttern. Pflanzen setzen also Acylzucker nicht nur als klebrige Fallen gegen Blattläuse, Blattflöhe oder Spinnmilben ein. Sie können damit auch geschickt gefräßige Raupen mit einem Duft markieren, der sie zu einer leichten Beute für ihre Feinde macht. (PNAS Early Edition, 25.-29. April 2011, DOI: 10.1073/pnas.1101306108).

Sich durch ein auffälliges Merkmal zu verraten, kann für manche Tierart zum Verhängnis werden. Bunte Federn oder unvorsichtiges Verhalten bei der Balz gehören ebenso dazu wie unfreiwillige Geruchsnoten, die durch den Organismus selbst oder aus dessen Exkrementen in die Umgebung freigesetzt werden. Larven des Dickkopffalters Epargyreus clarus wenden viel Zeit dafür auf, den Kot aus ihrem Unterschlupf so gründlich zu entfernen, damit Räuber sie nicht mithilfe des verräterischen Dufts erkennen können. Manche Pflanzenarten wiederum machen sich die Vorliebe fleischfressender Raubinsekten für ihre „grünen“ Duftsignale zunutze, um sich indirekt vor Fraßfeinden zu schützen. Kürzlich konnte Ian Baldwin, Leiter der Abteilung Molekulare Ökologie am Max-Planck-Institut für chemische Ökologie, zusammen mit seinen Doktoranden auf der Freilandstation in Utah (USA) zeigen, dass Tabakschwärmer-Raupen eine Substanz in Tabakblätter befördern, die zu Ungunsten der Raupe einen Blattduftstoff in ein gefährliches Locksignal umwandelt. Mit der als (E)-2-Hexenal bezeichneten Substanz werden Raubwanzen angelockt, die die Tabakschwärmer-Raupe vertilgen (vgl. Pressemeldung „Tödliches Eigentor - grüner Duft wird Tabakschwärmer-Raupen zum Verhängnis“).

In der Annahme, dass Trichome mit Giften oder klebrigen Substanzen gefüllte Abwehrstrukturen sind, beobachteten die Wissenschaftler überrascht, dass frisch geschlüpfte Tabakschwärmer-Raupen (Manduca sexta) und auch Raupen zweier Arten der Gattung Spodoptera nicht sofort in die Blätter des wilden Tabaks (Nicotiana attenuata) beißen; sie machten sich stattdessen zielstrebig daran, die Blatthaare und deren Inhalt zu vertilgen (siehe Video auf http://www.ice.mpg.de/ext/735.html). Der Grund dafür ist vermutlich der in den Trichomen in großer Menge vorhandene und mit aliphatischen Säuren verknüpfte Rohrzucker. Durch diese kalorienreiche Mahlzeit gedeihen die Tiere prächtig, eine vergiftende Wirkung konnte nicht festgestellt werden. Alexander Weinhold, Doktorand in Ian Baldwins Arbeitsgruppe, stellte jedoch bei Untersuchungen an den Tieren und deren Kot fest, dass sich durch die Verdauung des Blatthaar-Saftes das Duftprofil deutlich verändert hatte: Aus den Tieren und deren Kot drangen vier flüchtige verzweigtkettige aliphatische Säuren in den Luftraum – aus dem Kot innerhalb von zwei Stunden die beträchtliche Menge von 0,03 Milligramm. Die chemische Analyse ergab, dass die Säuren im Darm der Tiere von den Acylzuckern stammten, die mit den Blatthaaren aufgenommen wurden.

„Wir waren uns eigentlich sicher, dass mit den duftenden Fettsäuren Räuber, wie beispielsweise die Wanze Geocoris, angelockt werden, die dann die pflanzenfressenden Raupen und von der Motte abgelegte Eier vertilgen“, sagt Baldwin. Zusammen mit Kontrollexperimenten, die die vollkommen unbehaarte Tabakart Nicotiana glauca mit einschlossen, zeigte sich allerdings kein signifikant vermehrtes Auftreten der Wanzen. Allerdings fiel auf, dass auf zusätzlich mit den aliphatischen Säuren parfümierten Blättern häufiger Beutezüge gegen junge Tabakschwärmer-Raupen stattfanden. Nur war nicht erkennbar, wer zugeschlagen hatte. Unter dringendem Tatverdacht standen die am Standort Utah in großer Artenzahl vorkommenden Ameisen.

Um zu prüfen, ob und welche der vielen Ameisenarten, die den natürlichen Standort von wildem Tabak bevölkern, auf die Säuren reagieren, legte Ian Baldwin gekochte Reiskörner aus. Diese waren zusätzlich mit je 0,03 Milligramm an Fettsäuren, also derjenigen Menge, die im Kot der Raupen gemessen wurde, markiert. Das Ergebnis: Ameisen aus fünf verschiedenen Nestern steuerten gezielt die Reiskörner an und trugen diese fort. Die Ameisen gehören zur Art Pogonomyrmex rugosus, die sich sowohl von Pflanzensamen als auch von Zikaden und Raupen ernährt. In nachfolgenden umfangreichen Experimenten, die einen Ausschluss visueller Merkmale der Tabakschwärmer-Raupen erlaubten – so wurde beispielsweise frischer beziehungsweise erhitzter und damit geruchsneutraler Raupenkot eingesetzt - , konnten die Wissenschaftler beweisen, dass die Ameisen gezielt auf den Duft der jungen Raupen nach aliphatischen Säuren reagierten, der diesen damit zum Verhängnis wurde.

Die Forscher gehen davon aus, dass der Trick des wilden Tabaks, verlockende Zuckermoleküle mitsamt verzweigtkettiger aliphatischer Säuren anzubieten, nützlich ist, um die für ihn gefährlichen Raupenbabys an ihre Feinde zu verraten. Ob diese molekulare Strategie im ökologischen Sinne als „indirekte Verteidigung“ mit dem Erfolg der Arterhaltung bezeichnet werden kann, müssen weitere, bereits geplante Experimente zeigen, die beispielsweise transgene Pflanzen einschließen, deren Syntheseschritt zur Bildung acylierter Zucker in den Blatthaaren unterbrochen ist. [JWK/ITB]

Originalveröffentlichung:
A. Weinhold, I. T. Baldwin: Trichome-derived O-acyl sugars are a first meal for caterpillars that tags them for predation. Proceedings of the National Academy of Sciences USA, Early Edition, 25.-29. April 2011, DOI: 10.1073/pnas.1101306108
Weitere Informationen:
Prof. Dr. Ian T. Baldwin, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Straße 8,07745 Jena. Tel.: +49 (0)175 1804226 oder +1 435-703-4029 (USA). baldwin@ice.mpg.de
Bildanfragen: Downloads auf http://www.ice.mpg.de/ext/735.html oder bei
Angela Overmeyer, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Straße 8, 07745 Jena. Tel.: +49 (0)3641- 57 2110; overmeyer@ice.mpg.de

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Weitere Informationen:
http://www.ice.mpg.de/ext/735.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE