Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanozwerge als Tumorkiller

01.10.2013
Chemotherapie ist oft das Mittel der Wahl im Kampf gegen Krebs, doch die Neben-wirkungen sind massiv. Eine neue Methode könnte sie künftig minimieren: In Nanopartikeln verkapselt sollen Wirkstoffe Tumorzellen gezielt abtöten. Der Patient wird geschont.

Haarausfall, Übelkeit, Erbrechen, Müdigkeit, Appetitlosigkeit, Verlust von Wimpern und Augenbrauen, Infektanfälligkeit – die Liste der möglichen Nebenwirkungen bei einer Chemotherapie ist lang. Viele Krebspatienten leiden unter den starken Begleiterscheinungen der Behandlung.


Gebärmutterhalskarzinomzellen lassen sich mit verkapseltem Krebs-Wirkstoff effektiv und zielgenau abtöten (links). Hier wird der Wirkstoff Doxorubicin vorbereitet – ein in der Chemotherapie häufig verwendetes Medikament (rechts).

© Fraunhofer IAP

Um das Wachstum des Tumors zu stoppen und auch resistente Zellen zu zerstören, werden hochdosierte Zytostatika unter die Haut gespritzt oder intravenös verabreicht. Der Wirkstoff ist umso effektiver, je häufiger sich Zellen teilen. Dies trifft vor allem bei bösartigen Tumoren zu. Aber auch gesunde Schleimhaut- und Haarzellen teilen sich schnell. Sie werden daher ebenfalls angegriffen. Wissenschaftler suchen seit langem mit Hochdruck nach einer Therapie, die Tumorzellen gezielt abtötet und gesundes Gewebe nicht schädigt.

Mit einer neuen Methode wollen Forscher vom Fraunhofer-Institut für Angewandte Polymerforschung IAP in Potsdam den Teufelskreis durchbrechen: Sie verwenden Nanopartikel als Transportvehikel für den Krebs-Wirkstoff. Da die Partikel aufgrund ihres Aufbaus Zellen ähneln, eignen sie sich, um Arzneistoffe gezielt zum Tumor zu schleusen, dort anzudocken und bösartige Zellen effizient zu eliminieren.

Bei den winzigen, 200 bis 250 Nanometer großen Wirkstoffträgern setzen die Forscher auf hydrophobe, nicht wasserlösliche Lipidcarrier. Sie sind biologisch abbaubar, nach der Anwendung zersetzen sie sich im Körper. Polymere stabilisieren die Nanohülle, die mit Erkennungsmolekülen bestückt ist, die besonders gut mit Tumorzellen wechselwirken. Die Hülle der Nanoteilchen – Experten nennen sie Vesikel – ist chemisch ähnlich der einer Zelle aufgebaut. Die Wissenschaftler beladen diese Carrier mit Doxorubicin, einem in der Chemotherapie häufig verwendeten Krebsmedikament. Das Tensid Sodium Tetradecyl Sulfat (STS) sorgt dafür, dass der Wirkstoff besser aufgenommen wird.

Die Wirksamkeit ihrer Methode konnten die Forscher bereits in Labortests nachweisen. »Bei den in-vitro-Tests haben wir Gebärmutterhals-Tumorzellen (HeLa) und Dickdarmkrebszellen (HCT116) verwendet, da diese sehr unterschiedlich auf Doxorubicin reagieren. Im Gegensatz zu HeLa-Zellen sind HCT116-Zellen empfindlich gegenüber dem Wirkstoff. Die Untersuchungen haben wir – wie in Kliniken – mit pharmakologisch relevanten Dosierungen durchgeführt. Das Doxorubicin wurde der Zellkultur unverkapselt und in Nanocarriern verkapselt hinzugefügt«, erläutert Dr. Joachim Storsberg. Er hat die neue Therapie gemeinsam mit Dr. Christian Schmidt und Nurdan Dogangüzel vom IAP sowie in enger Zusammenarbeit mit Kollegen aus der Pharmazie, Prof. Dr. Mont Kumpugdee-Vollrath und Dr. J. P. Krause von der Beuth University of Applied Sciences in Berlin, entwickelt.

Chemotherapie verträglicher machen

Das Ergebnis der Labortests: Nach drei Tagen überlebten 43,3 Prozent der HeLa-Zellen unter der Zugabe von 1 Micromolar (µM) unverkapseltem Doxorubicin. Wird der Wirkstoff in Vesikeln verkapselt hinzugefügt, überleben hingegen nur 8,3 Prozent der bösartigen HeLa-Zellen. »Der Arzneistoff in der Nanohülle wirkt fünfmal effektiver«, sagt Storsberg. Dies lässt sich auch bei den Tests mit den Dickdarmkrebszellen beobachten: Hier überleben nach zwei Tagen 46,5 Prozent der HCT116-Zellen bei der Gabe von 0,1 µM Doxorubicin, während nur 13,3 Prozent der bösartigen Tumorzellen bei der Zugabe des verkapselten Wirkstoffs nicht eliminiert werden. Bei keinem der Tests wurden die gesunden Zellen angegriffen. »Mit Nanopartikeln als Trägerzellen ist eine wirkungsvollere und zugleich geringere Dosierung möglich. Dadurch und durch die zielgenaue Zufuhr des Wirkstoffs werden gesunde Zellen geschont und Nebenwirkungen minimiert«, ist Storsberg überzeugt. Ein weiteres Testergebnis: Das Verkapselungsmaterial ist nur in Kombination mit dem Wirkstoff wirksam. Unbeladen greift es die empfindlichen HCT116-Zellen nicht an. Mit ihrer Methode können Storsberg und sein Team sowohl untersuchen, wie effektiv ein verkapselter Arzneistoff wirkt, als auch wie »giftig« das eigentliche Nanomaterial ist. »Das gibt es bis dato so noch nicht«, betont der Chemiker.

Ihre Ergebnisse stellen die Forscher vom 28. bis 30. Oktober auf der Konferenz Nanotech Dubai 2013 vor. Jedoch erst wenn in-vivo-Experimente ebenfalls erfolgreich verlaufen sollten, können klinische Testreihen mit Krebspatienten vorbereitet werden.

Britta Widmann | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2013/Oktober/nanozwerge-als-tumorkiller-1.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen