Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanowissenschaften - Vom Beginn des Lebens

26.06.2015

An der LMU gründet sich das transdisziplinäres Netzwerk „OLIM“, in dem renommierte Forscher zum Ursprung der Evolution forschen.

Welche Prozesse könnten einst die nicht-lebende Materie angeregt haben, eine evolutionäre Maschinerie auszubilden? Wie konnte sich dieses frühe molekulare Leben dauerhaft etablieren? Und welche Netzwerke und Bedingungen des Stoffwechsels waren notwendig, um die ersten Zyklen der molekularen Evolution anzufüttern?


Foto: Juancat / Fotolia.com

„Es ist an der Zeit, diese Fragestellung mit überschaubaren, experimentell überprüfbaren Hypothesen anzugehen“, sagt Dieter Braun, Professor für System-Biophysik an der LMU und Mitglied der Nanosystems Initiative Munich (NIM).

Anlässlich des Vortrags von Professor John Sutherland vom MRC Laboratory of Molecular Biology in Cambridge, eines bekannten Experten für präbiotische Chemie, am 3. Juli 2015 gründen mehrere Forscher an der LMU des Center of Nanoscience (CeNS) und der NanoSystems Initiative (NIM) das Netzwerk „Origin of Life Initiative Munich“ (OLIM), um interdisziplinär die Ursprünge der Evolution zu erforschen. „Das Ziel des Netzwerkes ist es, experimentelle Erkenntnisse über die ersten Schritte zu gewinnen, mit denen sich Moleküle zu autonom zu lebenden Systemen entwickelten.“, sagt Braun.

Am Center of Nanoscience und an der die NanoSystems Initiative arbeiten bereits seit Jahren Wissenschaftler verschiedener Fachrichtungen zusammen. Das neue Netzwerk OLIM hat zum Ziel, die Nanowissenschaft des Lebensursprungs zu erforschen.

Das Netzwerk ist an der LMU angesiedelt, schließt sich aber auch mit Gruppen der Technischen Universität München und der Max-Planck-Institute für Astronomie und Biochemie zusammen. „Die LMU mit ihrer breiten Expertise bildet einen einzigartigen Forschungsstandort, um der noch jungen Disziplin der experimentellen Forschung zu den Ursprüngen des Lebens den nötigen Schub zu verleihen“, sagt Dieter Braun.

Die Forschung zum Ursprung des Lebens vereint viele Disziplinen: Astronomie, Geologie, Chemie, Physik und Biologiee. Die Astronomie beschreibt, wie Planeten und ihre molekulare Grundausstattung im All entstehen, die Geologie rekonstruiert die Bedingungen auf dem noch jungen Planeten. Die Chemie liefert Erkenntnisse darüber, wie die ersten informationstragenden Moleküle wie RNA oder Proteine entstanden sind.

Die Physik fokussiert, wie Nicht-Gleichgewichtszustände möglich sind, unter denen biologische Information entsteht – entgegen der Entropie. Und die Biologie schließlich gibt uns einen – wenn auch begrenzten – Rückblick auf die evolutionäre Erfolgsgeschichte.

Das Netzwerk wird die Münchner Wissenschaftler dieser Fachrichtungen zusammenführen, die ein genuines Interesse haben, die ersten Schritte der evolutionären Dynamik zu verstehen – einer Dynamik, die schließlich aus nicht-lebendiger Materie das reichhaltige Leben hat entstehen lassen, wie wir es heute kennen.

Kurzfristig soll sich das Netzwerk als eine permanente Diskussionsplattform etablieren. Mittelfristig soll es ein jährliches Treffen mit den Wissenschaftlern um Thomas Henning vom Max-Planck-Institut für Astronomie, Heidelberg, und Oliver Trapp von der Universität Heidelberg, die sich in der „Heidelberger Initiative zur Erforschung des Ursprungs des Lebens (HIFOL)“ zusammengeschlossen, haben ins Leben rufen. Ziel ist es, dass beide Initiativen einen gemeinsamen Antrag auf einen Transregio-Sonderforschungsbereich bei der Deutschen Forschungsgemeinschaft einreichen.

Welche geologischen Bedingungen müssen auf der Erde geherrscht haben, um den Übergang von toter zu lebender Materie zu ermöglichen? Welche Nicht-Gleichgewichtsprozesse auf der jungen Erde, welche Synthesewege könnten zu den frühen Biomolekülen führen? Kann die moderne Thermodynamik ein Rahmen abgeben für die Evolution von Systemen, die nicht im Gleichgewicht sind. Was können wir von der modernen Nanowissenschaft wie zum Beispiel dem DNA-Origami lernen? Wie weit können wir biologische Signaturen bis zum Ursprung des frühen Metabolismus und der frühen Translation zurückverfolgen?

Solche Themen, die das Netzwerk bearbeiten soll, sind in der Tat Fragen der Grundlagenforschung. Die Erforschung des Ursprungs des Lebens hat aber bereits eine Reihe innovativer biotechnologischer Anwendung ermöglicht. Das CeNS konnte eine Reihe rasch wachsender Start-up-Firmen etablieren, darunter Nanion und NanoTemper. NanoTemper beispielsweise ist entstanden aus der Erforschung des Lebensursprungs zu Thermalgradienten und ist heute ein weltweit agierendes Münchner Unternehmen mit mehr als 70 Mitarbeitern.

Der Vortrag von John Sutherland findet im CeNS Seminar der LMU (H 030) um 15:30 Uhr statt. Mehr Informationen auf den Seiten des Center of Nanoscience.
http://www.cens.de/calendar/summer-term-2015/sutherland/#c5515

Kontakt:
Prof. Dieter Braun
Systems Biophysics
Ludwig-Maximilians-Universität München

Tel.: 089 - 2180 2317
E-Mail: dieter.braun@lmu.de

Luise Dirscherl | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte