Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanoträgersystem zur Anwendung in der Wirkstoff- und Gentherapie

04.09.2013
Forschende der Universität Basel haben ein intelligentes Nanoträgersystem auf Basis von Peptiden entwickelt.

Aufgrund ihres besonderen Aufbaus organisieren sich diese Peptide in Wasser selbst zu etwa 200 Nanometer grossen sphärischen Kügelchen. Dieses neue Nanoträgersystem kann für den Transport und Schutz unterschiedlicher Gastmoleküle eingesetzt werden – denkbar ist insbesondere ein Einsatz in der Gentherapie. Die Arbeiten wurden in der Fachzeitschrift «Journal of Biomedical Materials Research Part A» veröffentlicht.

Die Gentherapie stellt die Linderung und Heilung diverser Krankheiten auf genetischem Niveau in Aussicht, zum Beispiel durch den Ersatz eines defekten Gens durch ein intaktes innerhalb der Zelle. Dabei ist man jedoch auf Nanotransportsysteme angewiesen, um die Gensequenzen in die Zellen einzuschleusen und sie vor dem vorzeitigen Abbau innerhalb des Körpers zu schützen.

Die Forschungsgruppe um Prof. Wolfgang Meier am Departement Chemie der Universität Basel hat nun ein neuartiges Nanoträgersystem entwickelt, das vielfältig Einsatz finden könnte. Das Trägermaterial basiert auf Peptiden, d.h. körpereigenen Struktureinheiten. Ihre Abbauwege im Körper sind gut bekannt und die Bausteine, die Aminosäuren, ermöglichen ein breites Spektrum an Funktionalitäten. Mit ihren vielfältigen Eigenschaften bieten sich Peptide als ideales Material zur Herstellung von funktionellen Medikamententrägersystemen an.

Durch ein besonderes Design organisieren sich die neu entworfenen amphiphilen Peptide in Wasser selbständig zu ca. 200 Nanometer grossen sphärischen Strukturen, sogenannten «peptide beads». Letztere bestehen aus einem Aggregat von Mizellen, in der Literatur als «Multicompartment Micelle» beschrieben. Die vorliegende Kugelstruktur eignet sich sehr gut für die Wirkstofftherapie, da lösliche und unlösliche Wirkstoffe gleichermassen aufgenommen und in unterschiedliche Zelllinien eingebracht werden konnten. Dabei konnte der gewünschte Effekt erzielt werden. Mit den Peptide Beads erreichte man auch, dass Gensequenzen in Form von siRNA und DNA in verschiedene Zellsysteme eingeschleust werden konnten. Dies ist insbesondere für die Gentherapie interessant, da die Verabreichung von siRNA/DNA-Sequenzen auf Nanoträgersysteme angewiesen ist.

Diese Arbeiten stellen aber nur einen ersten Schritt auf dem Weg zur Entwicklung eines optimierten Prototyps dar, der die eingelagerte DNA gezielt am Wirkort freisetzt und somit spezifisch dort anreichert. So könnte das Potenzial eines Wirkstoffs voll ausgeschöpft werden, was ein Fortschritt im Kampf gegen diverse Krankheiten darstellte.

Unterstützt wird die Entwicklung dieses rein peptidischen Nanotransportsystems für die Gentherapie durch die Gerbert Rüf Stiftung und die Firma Lascco SA sowie durch die Zusammenarbeit mit dem Departement Pharmazeutische Wissenschaften der Universität Basel.

Orginalbeitrag
Dirk de Bruyn Ouboter, Thomas Schuster, Vijay Shanker, Markus Heim, Wolfgang Meier
Multicompartment micelle-structured peptide nanparticles: A new biocompatible gene- and drug delivery tool

Journal of Biomedical Materials Research Part A, 2013 | doi: 10.1002/jbm.a.34778

Weitere Auskünfte
Prof. Wolfgang Meier, Universität Basel, Departement Chemie, Klingelbergstrasse 80, 4056 Basel. Tel. 061 267 38 02, E-Mail: Wolfgang.Meier@unibas.ch;
Weitere Informationen:
http://dx.doi.org/10.1002/jbm.a.34778 - Abstract

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics