Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von Nanosystemen zur Mesotechnologie

20.05.2009
Neuer SFB der Universität Bayreuth zur Makromolekül- und Kolloidforschung

Die Universität Bayreuth erhält einen neuen Sonderforschungsbereich auf dem Gebiet der Makromolekül- und Kolloidforschung.

Wie die Deutsche Forschungsgemeinschaft heute bekannt gab, wird der SFB 840 "Von partikulären Nanosystemen zur Mesotechnologie" von 2009 bis 2013 mit insgesamt rund 7 Mio. Euro gefördert. Die Förderentscheidung der DFG bestätigt die Spitzenposition der Universität Bayreuth in der Makromolekül- und Kolloidforschung, die seit Jahrzehnten zu ihren interdisziplinären Profilfeldern in der Forschung und in forschungsnahen Studiengängen zählt.

Bayreuth (UBT). Die Universität Bayreuth erhält einen neuen Sonderforschungsbereich auf dem Gebiet der Makromolekül- und Kolloidforschung. Wie die Deutsche Forschungsgemeinschaft heute bekannt gab, wird der SFB 840 "Von partikulären Nanosystemen zur Mesotechnologie" von 2009 bis 2013 mit insgesamt rund 7 Mio. Euro gefördert. Die Förderentscheidung der DFG bestätigt die Spitzenposition der Universität Bayreuth in der Makromolekül- und Kolloidforschung, die seit Jahrzehnten zu ihren interdisziplinären Profilfeldern in der Forschung und in forschungsnahen Studiengängen zählt. Dem bereits seit 1998 bestehenden SFB 481 "Komplexe Makromolekül- und Hybridsysteme in inneren und äußeren Feldern" wird nun ein Sonderforschungsbereich zur Seite gestellt, der die spezialisierten Bayreuther Kompetenzen im Bereich der Kolloidforschung bündelt und in eine noch junge Forschungsthematik einbringt. "Die Einrichtung dieses weiteren SFB ist für die Universität Bayreuth ein großer Erfolg und ein Meilenstein beim zukunftsorientierten Ausbau ihrer Forschungskompetenzen", erklärt Universitätspräsident Professor Dr. Rüdiger Bormann. "Damit werden wir auch in den nächsten Jahren vielversprechende Entwicklungen in der Makromolekül- und Kolloidforschung aktiv vorantreiben und mitgestalten können."

Der neue SFB gehört einer Forschungsrichtung an, die auf der erfolgreichen Entwicklung der Nanotechnologie aufsetzt. Diese hat es erreicht, dass winzige Bauteile mit Größenordnungen von wenigen Nanometern (Nanoteilchen oder Kolloide) gezielt strukturiert werden können. Technologische Anwendungen lassen sich jedoch nur realisieren, wenn diese Nanopartikel zu komplexeren Funktionssystemen mit makroskopisch nutzbaren Effekten verknüpft werden. Für diese neue sehr anspruchsvolle Aufgabe setzt sich in der internationalen Forschung immer stärker der Begriff der Mesotechnologie durch. Die Forschung steckt noch in den Anfängen, wenn es um die Frage geht, wie aus partikulären Nanosystemen komplexere Systeme entstehen, die - im Vergleich mit ihren Nanobauteilen - zum Teil völlig neuartige Eigenschaften und Funktionen aufweisen. Der SFB 840 stellt sich nun der Herausforderung, diese fehlende Schnittstelle zwischen der Nano-Welt (die sich auf einer Längenskala zwischen 1 und 100 Nanometern erstreckt) und der makroskopischen Welt schaffen zu wollen. Dabei müssen nicht nur Längenskalen überbrückt werden. Die entstehenden funktionellen Systeme auf der Mesoskala mit Dimensionen jenseits von 100 nm weisen in der Regel eine auf Selbstorganisationsprozessen beruhende hierarchische Struktur von hoher Komplexität auf. Erst hierdurch sind die Material- und Struktureigenschaften gewährleistet, in denen die Funktionen der komplexen Systeme verankert sind.

In der Natur gibt es zahlreiche Prozesse der Selbstorganisation, in denen sich partikuläre Nanosysteme zu größeren Einheiten auf der Mesoskala zusammenfügen. Zähne, Knochen, Perlmutt und andere sog. Biokomposite sind jahrtausendealte Beispiele dafür, dass Nanobausteine bereits von sich selbst her für den Aufbau komplexer Strukturen gleichsam programmiert sind. Der SFB 840 will die Bedingungen und Prozesse der Selbstorganisation besser verstehen lernen und die daraus gewonnenen Einsichten für die Herstellung künstlicher Mesosysteme nutzen. Maßgebend ist dabei die Erkenntnis, dass das Design derartiger Systeme bereits bei ihren kleinsten Bausteinen ansetzen muss. Deshalb lassen sich die Forschungsarbeiten des SFB in drei große Abschnitte unterteilen:

1. Zunächst einmal gilt es, Nanopartikel so zu strukturieren, dass sie zum einen definierte Funktionen innerhalb eines auf der Mesoskala angesiedelten Systems übernehmen können und zum anderen für die Selbstorganisation programmiert sind.

2. In weiteren Schritten werden die Prozesse untersucht, in denen sich die Nanopartikel auf der Mesoskala zusammenschließen. Das so vertiefte Verständnis der Selbstorganisation dieser Bausteine zu mesoskopischen Strukturen wird es ermöglichen, den Verlauf dieser Prozesse besser künstlich zu steuern.

3. Schließlich sollen die Eigenschaften der nanopartikulären Bausteine und die neuartigen Eigenschaften des mesoskopischen Gesamtsystems miteinander ins Verhältnis gesetzt und die dabei wirksamen kausalen Zusammenhänge aufgeklärt werden. Nur auf der Grundlage dieser Zusammenhänge können mesotechnologische Verfahren entwickelt werden, die geeignet sind, Systeme mit hochkomplexen Funktionalitäten zu realisieren, die dann in wohldefinierten Technologiefeldern direkt zur Anwendung kommen.

Der neue Bayreuther Sonderforschungsbereich wird sich insbesondere mit Anwendungen auf den Gebieten der Katalyse, der funktionalen Systeme (z.B. Photovoltaik und Filtersysteme) und des Leichtbaus befassen. Das Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG) - eine Zentrale Wissenschaftliche Einrichtung der Universität Bayreuth - bietet aufgrund seiner exzellenten Forschungsinfrastruktur beste Voraussetzungen für das Forschungsprojekt. Es vereint Grundlagen- und Anwendungskompetenzen aus der Chemie, der Physik und den Ingenieurwissenschaften und stärkt so die interdisziplinäre Zusammenarbeit. Der SFB 840 wird auf dieser Grundlage den Technologietransfer in die Wirtschaft mit hochinnovativen Kooperationsangeboten voranbringen können.

Kontaktadresse für weitere Informationen:

Professor Dr. Matthias Ballauff
Universität Bayreuth
- Lehrstuhl Physikalische Chemie I -
Universitätsstr. 30
95447 Bayreuth
Telefon: +49 (0)921 / 55-3305 oder -2761
E-Mail: carola.dannhorn@uni-bayreuth.de

Christian Wißler | idw
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit