Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von Nanosystemen zur Mesotechnologie

20.05.2009
Neuer SFB der Universität Bayreuth zur Makromolekül- und Kolloidforschung

Die Universität Bayreuth erhält einen neuen Sonderforschungsbereich auf dem Gebiet der Makromolekül- und Kolloidforschung.

Wie die Deutsche Forschungsgemeinschaft heute bekannt gab, wird der SFB 840 "Von partikulären Nanosystemen zur Mesotechnologie" von 2009 bis 2013 mit insgesamt rund 7 Mio. Euro gefördert. Die Förderentscheidung der DFG bestätigt die Spitzenposition der Universität Bayreuth in der Makromolekül- und Kolloidforschung, die seit Jahrzehnten zu ihren interdisziplinären Profilfeldern in der Forschung und in forschungsnahen Studiengängen zählt.

Bayreuth (UBT). Die Universität Bayreuth erhält einen neuen Sonderforschungsbereich auf dem Gebiet der Makromolekül- und Kolloidforschung. Wie die Deutsche Forschungsgemeinschaft heute bekannt gab, wird der SFB 840 "Von partikulären Nanosystemen zur Mesotechnologie" von 2009 bis 2013 mit insgesamt rund 7 Mio. Euro gefördert. Die Förderentscheidung der DFG bestätigt die Spitzenposition der Universität Bayreuth in der Makromolekül- und Kolloidforschung, die seit Jahrzehnten zu ihren interdisziplinären Profilfeldern in der Forschung und in forschungsnahen Studiengängen zählt. Dem bereits seit 1998 bestehenden SFB 481 "Komplexe Makromolekül- und Hybridsysteme in inneren und äußeren Feldern" wird nun ein Sonderforschungsbereich zur Seite gestellt, der die spezialisierten Bayreuther Kompetenzen im Bereich der Kolloidforschung bündelt und in eine noch junge Forschungsthematik einbringt. "Die Einrichtung dieses weiteren SFB ist für die Universität Bayreuth ein großer Erfolg und ein Meilenstein beim zukunftsorientierten Ausbau ihrer Forschungskompetenzen", erklärt Universitätspräsident Professor Dr. Rüdiger Bormann. "Damit werden wir auch in den nächsten Jahren vielversprechende Entwicklungen in der Makromolekül- und Kolloidforschung aktiv vorantreiben und mitgestalten können."

Der neue SFB gehört einer Forschungsrichtung an, die auf der erfolgreichen Entwicklung der Nanotechnologie aufsetzt. Diese hat es erreicht, dass winzige Bauteile mit Größenordnungen von wenigen Nanometern (Nanoteilchen oder Kolloide) gezielt strukturiert werden können. Technologische Anwendungen lassen sich jedoch nur realisieren, wenn diese Nanopartikel zu komplexeren Funktionssystemen mit makroskopisch nutzbaren Effekten verknüpft werden. Für diese neue sehr anspruchsvolle Aufgabe setzt sich in der internationalen Forschung immer stärker der Begriff der Mesotechnologie durch. Die Forschung steckt noch in den Anfängen, wenn es um die Frage geht, wie aus partikulären Nanosystemen komplexere Systeme entstehen, die - im Vergleich mit ihren Nanobauteilen - zum Teil völlig neuartige Eigenschaften und Funktionen aufweisen. Der SFB 840 stellt sich nun der Herausforderung, diese fehlende Schnittstelle zwischen der Nano-Welt (die sich auf einer Längenskala zwischen 1 und 100 Nanometern erstreckt) und der makroskopischen Welt schaffen zu wollen. Dabei müssen nicht nur Längenskalen überbrückt werden. Die entstehenden funktionellen Systeme auf der Mesoskala mit Dimensionen jenseits von 100 nm weisen in der Regel eine auf Selbstorganisationsprozessen beruhende hierarchische Struktur von hoher Komplexität auf. Erst hierdurch sind die Material- und Struktureigenschaften gewährleistet, in denen die Funktionen der komplexen Systeme verankert sind.

In der Natur gibt es zahlreiche Prozesse der Selbstorganisation, in denen sich partikuläre Nanosysteme zu größeren Einheiten auf der Mesoskala zusammenfügen. Zähne, Knochen, Perlmutt und andere sog. Biokomposite sind jahrtausendealte Beispiele dafür, dass Nanobausteine bereits von sich selbst her für den Aufbau komplexer Strukturen gleichsam programmiert sind. Der SFB 840 will die Bedingungen und Prozesse der Selbstorganisation besser verstehen lernen und die daraus gewonnenen Einsichten für die Herstellung künstlicher Mesosysteme nutzen. Maßgebend ist dabei die Erkenntnis, dass das Design derartiger Systeme bereits bei ihren kleinsten Bausteinen ansetzen muss. Deshalb lassen sich die Forschungsarbeiten des SFB in drei große Abschnitte unterteilen:

1. Zunächst einmal gilt es, Nanopartikel so zu strukturieren, dass sie zum einen definierte Funktionen innerhalb eines auf der Mesoskala angesiedelten Systems übernehmen können und zum anderen für die Selbstorganisation programmiert sind.

2. In weiteren Schritten werden die Prozesse untersucht, in denen sich die Nanopartikel auf der Mesoskala zusammenschließen. Das so vertiefte Verständnis der Selbstorganisation dieser Bausteine zu mesoskopischen Strukturen wird es ermöglichen, den Verlauf dieser Prozesse besser künstlich zu steuern.

3. Schließlich sollen die Eigenschaften der nanopartikulären Bausteine und die neuartigen Eigenschaften des mesoskopischen Gesamtsystems miteinander ins Verhältnis gesetzt und die dabei wirksamen kausalen Zusammenhänge aufgeklärt werden. Nur auf der Grundlage dieser Zusammenhänge können mesotechnologische Verfahren entwickelt werden, die geeignet sind, Systeme mit hochkomplexen Funktionalitäten zu realisieren, die dann in wohldefinierten Technologiefeldern direkt zur Anwendung kommen.

Der neue Bayreuther Sonderforschungsbereich wird sich insbesondere mit Anwendungen auf den Gebieten der Katalyse, der funktionalen Systeme (z.B. Photovoltaik und Filtersysteme) und des Leichtbaus befassen. Das Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG) - eine Zentrale Wissenschaftliche Einrichtung der Universität Bayreuth - bietet aufgrund seiner exzellenten Forschungsinfrastruktur beste Voraussetzungen für das Forschungsprojekt. Es vereint Grundlagen- und Anwendungskompetenzen aus der Chemie, der Physik und den Ingenieurwissenschaften und stärkt so die interdisziplinäre Zusammenarbeit. Der SFB 840 wird auf dieser Grundlage den Technologietransfer in die Wirtschaft mit hochinnovativen Kooperationsangeboten voranbringen können.

Kontaktadresse für weitere Informationen:

Professor Dr. Matthias Ballauff
Universität Bayreuth
- Lehrstuhl Physikalische Chemie I -
Universitätsstr. 30
95447 Bayreuth
Telefon: +49 (0)921 / 55-3305 oder -2761
E-Mail: carola.dannhorn@uni-bayreuth.de

Christian Wißler | idw
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Spot auf die Maschinerie des Lebens
23.08.2017 | Max-Planck-Institut für die Physik des Lichts, Erlangen

nachricht Immunsystem kann durch gezielte Manipulation des Zellstoffwechsels reguliert werden
23.08.2017 | Medical University of Vienna

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie