Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanosensor erschnuppert Krankheitserreger

29.03.2011
Mit Nanoröhrchen auf einem Chip lassen sich selbst kleinste Spuren von Erbsubstanz schell und zuverlässig nachweisen

Mit neuen Sensoren aus Kohlenstoff-Nanoröhrchen haben Forscher des Stuttgarter Max-Planck-Instituts für Festkörperforschung winzige Spuren der Erbsubstanz DNS nachgewiesen. Weil die Sensoren auf spezifische DNS-Sequenzen ansprechen, lassen sie sich prinzipiell für die schnelle Untersuchung von Blutproben verwenden. Der Nachweis von DNS ist notwendig, um unterschiedliche Krankheiten wie Infektionen durch Viren oder Mikroben zu diagnostizieren.


DNS-Test am Nanoröhrchen: Auf der der Oberfläche des Kohlenstoffröhrchens fixieren die Forscher des Max-Planck-Instituts für Festkörperforschung einzelne Stränge einer gesuchten Erbsubstanz. Daran lagern sich die passenden DNS-Stücke (gelb) aus der Probe und verändern die Leitfähigkeit des Nanoröhrchens. Diese Änderung der Leitfähigkeit lässt sich über die beiden Elektroden messen, die das Röhrchen überbrückt. © K. Balasubramanian

Die Nanosensoren der Stuttgarter Wissenschaftler sind so empfindlich, dass die DNS anders als bislang nicht mehr zeitaufwendig aufkonzentriert oder markiert werden muss. Die Forscher haben eine Routinemethode für die Herstellung ihrer Nanosensoren entwickelt, die prinzipiell eine schnelle Serienfertigung ermöglicht. Das Endprodukt könnte ein handygroßer Analyseapparat sein, der sich im Feld, etwa in einem von einer Epidemie betroffenen Gebiet, einsetzen ließe.

Wer während der Schweinegrippe-Epidemie im Krankenhaus eine leichte Erkältung oder Fieber bekam, wurde isoliert und auf Schweinegrippe untersucht, obwohl es sich um eine normale Erkältung gehandelt haben konnte. Weil es keine rasche Methode zum Nachweis der Krankheit gab, war die stundenlange Isolation mit Stress verbunden. Auch bei anderen Fällen von Infektionen, etwa nach einem Unfall, wäre eine deutlich schnellere Diagnose wünschenswert, da von ihrem Ergebnis die weitere Therapie abhängen kann.

Oft dauert es aber Tage bis die Diagnose vorliegt. Nämlich dann, wenn die Diagnose auf dem Nachweis der Erbsubstanz DNS beruht. Denn die DNS des Krankheitserregers liegt nur in Spuren im Blut vor, sodass sie durch die üblicherweise verwendeten optischen Methoden nicht detektiert werden kann. Die gesuchten DNS-Moleküle werden deshalb mit Hilfe der sogenannten Polymerase-Kettenreaktion (engl. Polymerase Chain Reaction, PCR) vervielfältigt und anschließend mit einem fluoreszierenden Molekül markiert. Erst dann ist ein so genanntes Fluoreszenzmikroskop in der Lage, die Fremd-DNS nachzuweisen.

Mit dem Sensorchip der Forscher um Kannan Balasubramanian vom Max-Planck-Institut für Festkörperforschung erübrigt es sich hingegen, die DNS aufzukonzentrieren. Denn der Chip weist die Erbsubstanz nicht mithilfe eines Mikroskops, sondern mit sehr empfindlicher Elektronik nach. Sein Herzstück sind Kohlenstoff-Nanoröhrchen. Diese bestehen aus einem aufgerollten Netz von Kohlenstoff-Atomen. Die Röhrchen mit weniger als einen Nanometer, einem Millionstel Millimeter Durchmesser zeichnen sich durch eine sehr gute Leitfähigkeit aus. Sie eignen sich als hochsensitive Sensoren, weil sich die gute Leitfähigkeit bereits durch geringe Störungen verändert – etwa wenn ein Molekül an das Röhrchen bindet. Der Grund hierfür ist, dass die Nanoröhrchen keine Atome in ihrem Innern aufweisen. Alle Kohlenstoffatome sitzen an seiner Oberfläche. Daher beeinflusst eine Störung an der Oberfläche das gesamte Röhrchen.

Doch Empfindlichkeit allein ist erst die halbe Miete. Da in einer biologischen Flüssigkeit außer der gesuchten noch viele weitere DNS-Moleküle herumschwimmen, muss der Sensor gewissermaßen blind gegen diese nicht interessierenden Moleküle gemacht werden. Die Fähigkeit des Sensors, nur eine bestimmte DNS-Sequenz zu detektieren, nennen Wissenschaftler Selektivität. Diese erreichen die Forscher indem sie vor der Messung bestimmte DNS-Moleküle an das Nanoröhrchen binden. Diese können sich jeweils mit dem gesuchten DNS-Molekül  und nur mit diesem  zu einer DNS-Doppelhelix verbinden. Die beiden Hälften passen sozusagen zusammen wie Schlüssel und Schloss. Wenn die beiden DNA-Moleküle sich verbinden, beeinflusst dies das Nanoröhrchen ebenso als würde ein Molekül direkt an seine Oberfläche binden: Die Elektronendichte auf dem Kohlenstoff-Nanoröhrchen verändert sich und damit dessen Leitfähigkeit.

Sensorchip für mobile Diagnosegeräte
Die Stuttgarter Forscher haben Chips gebaut, in denen mehrere der vorbehandelten Kohlenstoff-Röhrchen zwei Elektroden miteinander verbinden. Die Elektroden bilden einen wenige Tausendstel Millimeter breiten Kanal durch den die zu untersuchende Lösung fließt, und in Kontakt mit den Nanoröhrchen tritt. Die Elektroden lassen sich an ein Messgerät anschließen, das die Änderung der Leitfähigkeit bestimmt.

Durch eine chemische Prozedur lösten die Forscher die DNS-Moleküle nach der Messung wieder von den Nanoröhrchen ab, sodass der Sensor wieder verwendet werden konnte. Eine so genannte Referenzelektrode macht die Messergebnisse reproduzierbar und stabil.

Bei einem ersten Versuch mit einer künstlichen Lösung aus synthetischen DNS-Molekülen fanden die Stuttgarter Forscher eine so geringe Spur der gesuchten Moleküle, wie sie bislang kein Sensor nachweisen konnte. In Zahlen ausgedrückt wies der Sensor 2000 Moleküle der gesuchten DNS in 30 Mikrolitern Lösung nach. Das entspricht einer 100 attomolaren DNS-Lösung (ein Attomol entspricht dem Milliardstel Teil eines Milliardstel Mols).

„Wir glauben, dass die Methode soweit verfeinert werden kann, dass noch weit geringere Konzentrationen, im Extremfall sogar einzelne Moleküle nachgewiesen werden können“, sagt Kannan Balasubramanian. Die nächste Hürde, die die Forscher nehmen wollen, ist die Untersuchung von echten biologischen Flüssigkeiten. Angefangen haben sie damit bereits.

Der Erfolg des vom Bundesministerium für Bildung und Forschung geförderten Teams beruht auf langjähriger Forschungsarbeit, bei der die Wissenschaftler eine Routine-Methode zur Herstellung von hochempfindlichen Sensor-Chips mit Kohlenstoff-Nanoröhrchen entwickelt haben. „Diese Methode ist prinzipiell skalierbar“, sagt Balasubramanian. Das heißt die Sensor-Chips könnten in Serie gefertigt werden. Der Forscher glaubt daher, dass die Nanosensoren aus Stuttgart einst für handygroße mobile Diagnosegeräte genutzt werden könnten, um im Feld oder in Krankenhäusern zuverlässig und schnell Krankheitserreger zu identifizieren.

Ansprechpartner
Dr. Kannan Balasubramanian
Max-Planck-Institut für Festkörperforschung, Stuttgart
Telefon: +49 711 689-1530
Fax: +49 711 689-1662
E-Mail: b.kannan@fkf.mpg.de
Tetiana Kurkina
Max-Planck-Institut für Festkörperforschung, Stuttgart
Telefon: +49 711 689-1728
Fax: +49 711 689-1662
E-Mail: t.kurkina@fkf.mpg.de
Originalveröffentlichung
Tetiana Kurkina, Alexis Vlandas, Ashraf Ahmad, Klaus Kern, und Kannan Balasubramanian
Label-Free Detection of Few Copies of DNA with Carbon Nanotube Impedance Biosensors

18. März 2011; DOI: 10.1002/anie.201006806

Dr. Kannan Balasubramanian | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/1317599/nanosensoren_in_medizinischer_Diagnostik?page=1

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise