Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanoporen machen die Sterilfiltration sicherer

02.07.2010
Unregelmäßige Poren, geringe Durchflussraten: Für die Sterilfiltration verwendete Membranfilter aus Kunststoff garantieren nicht immer Keimfreiheit. Filtrationsmembranen aus Aluminiumoxid sind zuverlässiger – die Größe der Nanoporen lässt sich präzise einstellen. Sogar kleinste Viren können die Membran nicht passieren.

Die Guten gehören ins Töpfchen, die Schlechten ins Kröpfchen – auf diesem Prinzip basiert die Sterilfiltration: Dabei befreit eine Filtrationsmembran Flüssigkeiten von unerwünschten Partikeln und Keimen. Durch die Poren des Filters, die einen Durchmesser von meist wenigen Zehntausendstel Millimeter haben, gelangt nichts, was größer ist. Herkömmliche Membranen, meist aus Kunststoffen, stoßen dabei an Grenzen: Ihre Poren sind nicht gleichmäßig verteilt, hin und wieder fallen sie auch zu groß aus – und Partikel flutschen doch durch. Zudem können gewöhnliche Filtrationsmembranen gegen Viren kaum etwas ausrichten: Die meisten Viren sind kleiner als die Poren und lassen sich somit nicht herausfiltern.


Diese mechanisch-stabilisierte nanoporöse Filtermembran weist eine regelmäßige Porenstruktur auf. Zugleich ist die Porengrößenverteilung sehr eng und gleichmäßig. © Fraunhofer IWM

Forscher am Fraunhofer-Institut für Werkstoffmechanik IWM in Halle haben jetzt eine neue Generation von Filtrationsmembranen geschaffen: Sie entwickelten keramische Membranen mit einer regelmäßigen Porenstruktur sowie einer sehr engen und gleichmäßigen Porengrößenverteilung. »Im Vergleich zu bisherigen keramischen Membranen besitzen sie eine bessere mechanische Stabilität sowie wesentlich höhere Durchflussraten und können damit erstmals Polymermembranen ersetzen«, sagt Annika Thormann, Projektleiterin am IWM. Diese Membranen garantieren deutlich zuverlässigere Filtrationsergebnisse als es bei Polymermembranen der Fall ist. Elektronenmikroskopische Aufnahmen der Membranen beweisen: Wie Waben eines Bienenstocks sitzen die Poren regelmäßig aneinander, eine gleicht der anderen.

»Um solche Filtrationsmembranen herstellen zu können, verwenden wir als Ausgangsmaterial hochreines Aluminium, das wir durch Fließpressen und thermomechanische Strukturierung in die gewünschte Form bringen«, erläutert Thormann. Doch wie kann man die winzigen Poren auf einer Aluminiumplatte so exakt herstellen? »Diese Arbeit übernimmt eine chemische Reaktion«, sagt Thormann. Das Aluminiumformteil kommt in ein Säurebad, in dem eine anodische Oxidation stattfindet. Bei dieser Elektrolyse bildet sich auf der Oberfläche eine wenige Mikrometer dicke Oxidschicht. »Winzige Poren wachsen während der Oxidation in das Aluminium hinein«, erklärt die Wissenschaftlerin. Diese Nanoporen sind wabenförmig und senkrecht zur Oberfläche und alle parallel zueinander ausgerichtet. »Um die Porengröße festzulegen, müssen wir die Spannung und die Konzentration der Säure stabil einstellen«, so Thormann. Auch die Dicke der nanoporösen Schicht, und damit die Durchflussrate der Membran, kann man über die Dauer der Oxidation genau festlegen. Abschließend müssen die Poren nur noch geöffnet werden. Dabei hilft ein chemischer Ätzschritt, der unnötige Aluminiumreste ablöst.

Das Ergebnis sind hochpräzise Filtrationsmembranen mit einer hohen Porosität. »Den Porendurchmesser können wir zwischen 15 und 450 Nanometer variieren«, sagt die Forscherin. Bei 15 Nanometer haben selbst kleinste Viren keine Chance, durchzukommen. Von den neuen Filtrationsmembranen profitiert vor allem die Biotechnologie. Neben der Nutzung der Filtrationseigenschaften bei der Herstellung von sterilen Medien können auch beim Tissue Engineering, also der Kultivierung von künstlichem Gewebe, die Membranen durch ihre hohe Porosität von Vorteil sein.

Annika Thormann | Fraunhofer Mediendienst
Weitere Informationen:
http://www.fraunhofer.de/presse/presseinformationen/2010/07/sterilfiltration-nanoporen.jsp

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten