Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanopflaster repariert Herzmuskel

12.03.2015

Herzmuskelzellen sorgen dafür, dass sich das Herz zusammenzieht und es so das Blut durch den Körper pumpt. Bei Herzerkrankungen können diese Zellen absterben oder nicht mehr ihre volle Leistung entfalten. Saarbrücker Forscher haben ein Verfahren entwickelt, mit dem sie solche Zellen auf einer Nanooberfläche nachzüchten. Das Besondere: Die Zellen wachsen dabei entlang einer vorgegebenen Richtung. Nur so können sie sich wie im gesunden Gewebe richtig zusammenziehen. Als Nanopflaster könnte die Methode künftig zum Einsatz kommen, etwa um angeborene Herzfehler bei Kindern zu korrigieren, aber auch um Patienten nach einem Infarkt zu behandeln.

Rund 60- bis 90-mal schlägt das menschliche Herz in der Minute. Dabei pumpt es rund fünf bis sechs Liter Blut durch die Adern, bei sportlichen Aktivitäten sogar 20 Liter und mehr. Damit dies alles funktioniert, müssen die Herzmuskelzellen richtig arbeiten: Hierzu ziehen sie sich blitzschnell und in regelmäßigen Abständen zusammen.


Die Abbildung zeigt Herzmuskelzellen, die entlang vorgegebener 2-Mikrometer-Linien in eine Richtung wachsen.

Foto: Karin Kiefer


Die Abbildung zeigt eine Aufnahme eines Rasterelektronenmikroskops. Zu sehen sind Herzmuskelzellen, die auf einem Aluminiumplättchen entlang der Linien-Struktur wachsen.

Foto: Karin Kiefer

„Diese Kontraktionen erfolgen dabei immer in eine vorgegebene Richtung“, sagt Karin Kiefer, die in der Klinik für Kinderkardiologie am Homburger Uniklinikum bei Professor Hashim Abdul-Khaliq forscht.

Bei einer Erkrankung des Herzmuskels können diese Zellen absterben oder ihre volle Funktion nicht mehr erfüllen. In der Folge ist das Herz nicht mehr so leistungsfähig. Um Betroffene besser zu therapieren, arbeiten Forscher daran, Herzmuskelzellen im Labor zu züchten. Diese könnten dann in das abgestorbene Gewebe transplantiert werden. Das Problem: Mit einem einfachen Wachsen der Zellen alleine ist es nicht getan.

„Damit sich die gezüchteten Zellen wie im Herzmuskel gemeinsam zusammenziehen, müssen sie in dieselbe Richtung wachsen“, erklärt Kiefer. „Würde man die Zellen zum Beispiel einfach nur in den Muskel spritzen, würden sie dort kreuz und quer wachsen.“

Gemeinsam mit Forscherkollegen des Leibniz-Instituts für Neue Materialien um Cenk Aktas und Juseok Lee vom Programmbereich CVD/Biooberflächen hat das Team der Saar-Uni eine Art Nanopflaster entwickelt, auf dem die Zellen in eine vorgegebene Richtung wachsen.

Das Pflaster besteht aus einem hauchdünnen Aluminium-Plättchen, das mit einer Aluminiumoxidschicht überzogen ist. Das Besondere an den Plättchen ist die Struktur, wie Karin Kiefer erläutert: „Die einzelnen Aluminiumoxid-Komponenten kann man sich wie eine Portion Spaghetti auf einem Teller vorstellen.“

Für ihre Studie haben die Wissenschaftler die Spaghetti-Struktur mit einem Laser bearbeitet und parallel verlaufende Linien hineingeschnitten. Dabei haben sie verschiedene Plättchen erzeugt, deren Linien Abstände zwischen ein und acht Mikrometern besitzen. Anschließend haben sie die Zellen darauf aufgebracht.

Dieses Material wurde bereits vor ein paar Jahren von Saarbrücker Chemikern um Professor Michael Veith entwickelt. Die Forscher konnten damals bereits nachweisen, dass es für biologische Proben gut verträglich ist.

„Wir konnten zeigen, dass die mit dem Laser bearbeitete Nanostruktur den Herzmuskelzellen eine Wuchsrichtung vorgibt“, kommentiert die Biologin die Ergebnisse. Am besten sind die Zellen in eine gemeinsame Richtung gewachsen, wenn die Linien zwei bis vier Mikrometer breit waren. Bei unbehandelten Plättchen kam es hingegen zu ungeordnetem Wachstum.

In Folgestudien müsste nun geklärt werden, inwieweit sich die so gezüchteten Zellen auch wie natürliche Zellen im Gewebe zusammenziehen können. Darüber hinaus ist denkbar, das Pflaster mit einem Material zu entwickeln, das sich im Körper selber abbaut.

Mediziner könnten das Nanopflaster nutzen, um Kinder zu therapieren, die an einem angeborenen Herzfehler leiden. Mit der Technik könnten etwa Löcher zwischen den Kammern und Vorkammern des Herzens geschlossen werden. Aber auch bei anderen Patienten, beispielsweise nach einem Herzinfarkt, könnte die Methode zum Einsatz kommen.

Die Studie wurde in der renommierten Fachzeitschrift „Nanotechnology“ veröffentlicht: Alignment of human cardiomyocytes on laser patterned biphasic core/shell nanowire assemblies. DOI: 10.1088/0957-4484/25/49/495101

Gemeinsame Pressemeldung der Universität des Saarlandes und des Leibniz-Instituts für Neue Materialien

Fragen beantworten:
Dr. Karin Kiefer
Klinik für Kinderkardiologie
Universität des Saarlandes
Tel.: 0681 9300-401
E-Mail: Karin.Kiefer(at)uni-saarland.de

Dr.-Ing. Cenk Aktas
INM – Leibniz-Institut für Neue Materialien
Leiter CVD/Biooberflächen
Tel: 0681 9300 140
E-Mail: cenk.aktas(at)inm-gmbh.de

Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681/302-2601).

Melanie Löw | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise