Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Nanopartikel, öffne Dich!“ – Programmierbares DNA-Ventil setzt gezielt Wirkstoffe frei

11.06.2010
Medikamente müssen oftmals hoch dosiert verabreicht werden, weil auf dem Weg durch den Körper Wirkstoff verloren geht. Dies kann aber verstärkt zu unerwünschten Nebenwirkungen führen.

Damit die Dosis eines Medikaments künftig so niedrig wie therapeutisch möglich gehalten werden kann, sollen die Wirkstoffe in Zukunft direkt zum Zielort im Organismus transportiert und dort erst freigesetzt werden. Dafür sollen sie in Nanopartikel eingeschlossen werden, die ihre Fracht nur bei einem bestimmten pH-Wert, einer definierten Temperatur oder unter anderen spezifischen Bedingungen freigeben.

„Die Kunst besteht darin, Partikel zu entwickeln, die sich ganz exakt auf nur eines dieser Signale hin öffnen und den Wirkstoff freisetzen – sich also entsprechend programmieren lassen“, sagt der LMU-Chemiker Professor Thomas Bein, der auch dem Exzellenzcluster „Nanosystems Initiative Munich“ (NIM) angehört. Ihm und seinen Mitarbeitern ist in Zusammenarbeit mit der Gruppe des LMU-Chemikers Thomas Carell nun gelungen, in wenigen Schritten Silikat-Partikel herzustellen, die sich je nach Bedarf bei einer bestimmten Temperatur öffnen. „Als Ventil fungieren dabei DNA-Moleküle, deren Temperatursensitivität über die Zahl ihrer Bausteine präzise reguliert werden kann“, sagt Bein. „Das Konzept der programmierten Freisetzung lässt sich bei Medikamenten einsetzen, aber auch prinzipiell bei Waschmitteln und in der Industrie.“ (Angewandte Chemie online, 11. Juni 2010).

Selbst feinste Sandkörner sind tausendmal größer als die porösen Silikatpartikel, die Wissenschaftler als Transportvehikel für medizinische und andere Wirkstoffe nutzen. Über zahlreiche Poren nehmen diese Teilchen, deren Durchmesser nur etwa 50 Nanometer beträgt, Wirkstoffe durch Diffusion relativ leicht auf. Diese Poren zu verschließen und für eine gezielte Freisetzung zu programmieren, erfordert aber einen hohen Forschungsaufwand. Das Team um Bein nutzte kurze doppelsträngige DNA-Stücke als Ventil. Denn die beiden Stränge des Moleküls trennen sich bei erhöhter Temperatur und lösen sich voneinander – ähnlich wie bei einem Reißverschluss. Besonders wichtig für die Chemiker war, dass diese Funktion präzise programmierbar ist: Je länger ein doppelsträngiges DNA-Stück ist, desto höher muss die Temperatur sein, um die beiden Stränge aufschmelzen zu lassen.

Im Versuch hafteten kurze doppelsträngige DNA-Moleküle auf der Oberfläche des Partikels. Dabei band aber nur einer der beiden Stränge – über ein kürzlich an der LMU entwickeltes Azid-Alkin-Bindeprinzip – an das Silikat(1). Der andere Strang dagegen trug am Ende nahe der Partikeloberfläche ein Biotin-Molekül. Nach Befüllen des Partikels bindet hieran ein Avidinprotein, das sich als Verschluss auf eine Pore des Silikat-Partikels legt. Erst wenn die DNA aufschmilzt, wird das Avidin von der Porenöffnung weggeschoben und die Freisetzung der Wirkstoffe ermöglicht. Versuchsreihen zeigten, dass DNA-Doppelstränge mit 15 Basenpaaren bei 45°C komplett aufschmelzen, während sich ein Molekül aus 25 dieser Bausteine erst bei 65°C öffnet. „Damit können wir den Deckel quasi auf Knopfdruck öffnen“, sagt Bein. „Wir erwarten, dass die molekular programmierte Freisetzung von Wirkstoffen auf vielen Gebieten wie beispielsweise der gezielten Freisetzung von Medikamenten oder auch in Waschmitteln und in industriellen Prozessen Bedeutung erlangen wird.“ (bige/suwe)

Publikation:
„Ein programmierbares, DNS-basiertes molekulares Ventil für kolloidales, mesoporöses Silica“,
Axel Schlossbauer, Simon Warncke, Philipp E. Gramlich, Johann Kecht, Antonio Manetto, Thomas Carell und Thomas Bein
Angewandte Chemie online, 11. Juni 2010
(1) A. Schlossbauer, D. Schaffert, J. Kecht, E. Wagner, T. Bein, Click chemistry for high-density biofunctionalization of mesoporous silica, J. Am. Chem. Soc. 2008, 130, 12558.
Ansprechpartner:
Prof. Dr. Thomas Bein
Department für Chemie, LMU,
Nanosytems Initiative Munich (NIM),
Tel.: 089 / 2180-77623
E-Mail: bein@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://bein.cup.uni-muenchen.de
http://www.uni-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie