Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Nanopartikel, öffne Dich!“ – Programmierbares DNA-Ventil setzt gezielt Wirkstoffe frei

11.06.2010
Medikamente müssen oftmals hoch dosiert verabreicht werden, weil auf dem Weg durch den Körper Wirkstoff verloren geht. Dies kann aber verstärkt zu unerwünschten Nebenwirkungen führen.

Damit die Dosis eines Medikaments künftig so niedrig wie therapeutisch möglich gehalten werden kann, sollen die Wirkstoffe in Zukunft direkt zum Zielort im Organismus transportiert und dort erst freigesetzt werden. Dafür sollen sie in Nanopartikel eingeschlossen werden, die ihre Fracht nur bei einem bestimmten pH-Wert, einer definierten Temperatur oder unter anderen spezifischen Bedingungen freigeben.

„Die Kunst besteht darin, Partikel zu entwickeln, die sich ganz exakt auf nur eines dieser Signale hin öffnen und den Wirkstoff freisetzen – sich also entsprechend programmieren lassen“, sagt der LMU-Chemiker Professor Thomas Bein, der auch dem Exzellenzcluster „Nanosystems Initiative Munich“ (NIM) angehört. Ihm und seinen Mitarbeitern ist in Zusammenarbeit mit der Gruppe des LMU-Chemikers Thomas Carell nun gelungen, in wenigen Schritten Silikat-Partikel herzustellen, die sich je nach Bedarf bei einer bestimmten Temperatur öffnen. „Als Ventil fungieren dabei DNA-Moleküle, deren Temperatursensitivität über die Zahl ihrer Bausteine präzise reguliert werden kann“, sagt Bein. „Das Konzept der programmierten Freisetzung lässt sich bei Medikamenten einsetzen, aber auch prinzipiell bei Waschmitteln und in der Industrie.“ (Angewandte Chemie online, 11. Juni 2010).

Selbst feinste Sandkörner sind tausendmal größer als die porösen Silikatpartikel, die Wissenschaftler als Transportvehikel für medizinische und andere Wirkstoffe nutzen. Über zahlreiche Poren nehmen diese Teilchen, deren Durchmesser nur etwa 50 Nanometer beträgt, Wirkstoffe durch Diffusion relativ leicht auf. Diese Poren zu verschließen und für eine gezielte Freisetzung zu programmieren, erfordert aber einen hohen Forschungsaufwand. Das Team um Bein nutzte kurze doppelsträngige DNA-Stücke als Ventil. Denn die beiden Stränge des Moleküls trennen sich bei erhöhter Temperatur und lösen sich voneinander – ähnlich wie bei einem Reißverschluss. Besonders wichtig für die Chemiker war, dass diese Funktion präzise programmierbar ist: Je länger ein doppelsträngiges DNA-Stück ist, desto höher muss die Temperatur sein, um die beiden Stränge aufschmelzen zu lassen.

Im Versuch hafteten kurze doppelsträngige DNA-Moleküle auf der Oberfläche des Partikels. Dabei band aber nur einer der beiden Stränge – über ein kürzlich an der LMU entwickeltes Azid-Alkin-Bindeprinzip – an das Silikat(1). Der andere Strang dagegen trug am Ende nahe der Partikeloberfläche ein Biotin-Molekül. Nach Befüllen des Partikels bindet hieran ein Avidinprotein, das sich als Verschluss auf eine Pore des Silikat-Partikels legt. Erst wenn die DNA aufschmilzt, wird das Avidin von der Porenöffnung weggeschoben und die Freisetzung der Wirkstoffe ermöglicht. Versuchsreihen zeigten, dass DNA-Doppelstränge mit 15 Basenpaaren bei 45°C komplett aufschmelzen, während sich ein Molekül aus 25 dieser Bausteine erst bei 65°C öffnet. „Damit können wir den Deckel quasi auf Knopfdruck öffnen“, sagt Bein. „Wir erwarten, dass die molekular programmierte Freisetzung von Wirkstoffen auf vielen Gebieten wie beispielsweise der gezielten Freisetzung von Medikamenten oder auch in Waschmitteln und in industriellen Prozessen Bedeutung erlangen wird.“ (bige/suwe)

Publikation:
„Ein programmierbares, DNS-basiertes molekulares Ventil für kolloidales, mesoporöses Silica“,
Axel Schlossbauer, Simon Warncke, Philipp E. Gramlich, Johann Kecht, Antonio Manetto, Thomas Carell und Thomas Bein
Angewandte Chemie online, 11. Juni 2010
(1) A. Schlossbauer, D. Schaffert, J. Kecht, E. Wagner, T. Bein, Click chemistry for high-density biofunctionalization of mesoporous silica, J. Am. Chem. Soc. 2008, 130, 12558.
Ansprechpartner:
Prof. Dr. Thomas Bein
Department für Chemie, LMU,
Nanosytems Initiative Munich (NIM),
Tel.: 089 / 2180-77623
E-Mail: bein@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://bein.cup.uni-muenchen.de
http://www.uni-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie