Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanopartikel bleiben unberechenbar

19.04.2017

Das Verhalten von Kleinstteilchen in der Umwelt ist äusserst komplex. Um dieses umfassend zu verstehen, fehlt es heute an systematischen Experimentaldaten, wie ETH-Umweltwissenschaftler in einer grossen Übersichtsstudie zeigen. Eine standardisiertere Herangehensweise würde das Forschungsfeld weiterbringen.

Die Nanotech-Industrie boomt. Jährlich werden weltweit mehrere Tausend Tonnen künstliche Nanopartikel hergestellt. Ein Teil davon gelangt früher oder später in Gewässer und Böden. Was dort mit ihnen genau geschieht, können selbst Experten nur schwer sagen. Die Frage ist komplex, denn es gibt viele verschiedene Arten von künstlichen Nanopartikeln. Und vor allem: Die Partikel verhalten sich in der Umwelt je nach herrschenden Bedingungen völlig unterschiedlich.


Auswertung der in der Literatur veröffentlichten Daten mit einer Netzwerk-Analyse. Diese macht sichtbar, welche Arten von Nanopartikeln (blau) bei welchen Umweltbedingungen (rot) untersucht wurden.

Thomas Kast

Forschende um Martin Scheringer, Privatdozent am Departement Umweltsystemwissenschaften, wollten Licht ins Dunkel bringen. Sie suchten in 270 wissenschaftlichen Studien und den beinahe 1000 darin erwähnten Laborexperimenten zum Verhalten von künstlichen Nanopartikeln nach Mustern. Dies mit dem Ziel, allgemeingültige Voraussagen zum Verhalten der Partikel zu machen.

Partikel heften sich an alles

Den Forschenden präsentierte sich beim Kombinieren der Daten jedoch ein sehr uneinheitliches Bild. «Der Sachverhalt ist komplexer, als das wohl viele Wissenschaftler noch vor Jahren vorausgesagt hätten», sagt Scheringer. «Und wir müssen einsehen, dass wir mit den uns heute zur Verfügung stehenden Daten noch kein einheitliches Bild zeichnen können.»

Nicole Sani-Kast, Doktorandin in der Gruppe von Scheringer und Erstautorin der in der Fachzeitzeitschrift PNAS veröffentlichten Analyse, ergänzt: «Künstliche Nanopartikel verhalten sich sehr dynamisch, und sie sind sehr reaktionsfreudig. Die Teilchen heften sich an alles, was sie finden: an andere Nanopartikel, um mit ihnen Agglomerate zu bilden, oder andere in der Umwelt vorhandene Moleküle.»

Netzwerk-Analyse

Womit genau die Teilchen reagieren und wie schnell, hängt von verschiedenen Faktoren ab: dem Säuregrad von Wasser oder Boden, der Konzentration der vorhandenen Mineralstoffe und Salze und vor allem der Zusammensetzung der im Wasser gelösten oder im Boden vorhandenen organischen Moleküle. Ausserdem macht die Tatsache, dass künstliche Nanopartikel oft oberflächenbeschichtet sind, die Sache noch komplizierter: Denn je nach Umweltbedingungen behalten oder verlieren die Partikel ihre Beschichtung, was wiederum ihr Reaktionsverhalten beeinflusst.

Um die in der Literatur veröffentlichten Resultate auszuwerten, wandte ETH-Doktorandin Sani-Kast erstmals in diesem Forschungsfeld eine Netzwerk-Analyse an, wie sie zum Beispiel aus der Sozialforschung zum Erfassen von Netzwerken sozialer Beziehungen bekannt ist. Damit konnte sie zeigen, dass die vorhandenen Daten wenig divers, wenig konsistent und wenig strukturiert sind.

Mehr Systematik für maschinelles Lernen

«Wären strukturierte, konsistentere und ausreichend diverse Daten vorhanden, wäre es denkbar, mit den Methoden des Maschinellen Lernens allgemeingültige Muster zu entdecken», sagt Scheringer. «Wir sind allerdings noch nicht an diesem Punkt.» Zunächst müssten ausreichend strukturierte Experimentaldaten vorhanden sein.

«Damit die Wissenschaftsgemeinschaft jedoch systematisch und standardisiert solche Experimente durchführt, wäre wohl irgendeine Art von Koordination nötig», ergänzt ETH-Doktorandin Sani-Kast, doch sie weiss, dass solche Arbeiten schwierig zu koordinieren sind. Es entspricht eher der Natur und den Vorlieben von Wissenschaftlern, neue Methoden zu entwickeln und zuvor nicht analysierte Umweltbedingungen zu untersuchen, als routinemässig standardisierte Experimente durchführen.

[Kasten:]
Künstliche von natürlichen Nanopartikeln unterscheiden

Neben der mangelnden Systematik gibt es noch ein zweites, handfestes Problem beim Erforschen des Verhaltens von künstlichen Nanopartikeln: Viele künstliche Nanopartikel bestehen aus chemischen Elementen und Verbindungen, die natürlicherweise in der Umwelt vorkommen. Künstliche Teilchen in der Umwelt von natürlichen zu unterscheiden, war mit bisherigen Messmethoden schwierig.

Forschende am Departement Chemie und angewandte Biowissenschaften der ETH Zürich unter der Leitung von ETH-Professor Detlef Günther haben jüngst jedoch eine leistungsfähige Methode etabliert, mit der eine solche Unterscheidung in Routineuntersuchungen möglich wird. Die Wissenschaftler nutzten dazu eine topmoderne und hochempfindliche Massenspektrometrie-Technik (genannt spICP-TOF-Massenspektrometrie). Mit dieser können sie von jedem einzelnen Nanoteilchen einer Probe bestimmen, aus welchen chemischen Elementen es zusammengesetzt ist.

In Zusammenarbeit mit Wissenschaftlern der Universität Wien wandten die ETH-Forschenden die Methode auf Bodenproben an, die natürliche Nanopartikel mit dem chemischen Element Cer enthalten, und in die sie künstliche Cerdioxid-Nanopartikel mischten. Mit Methoden des maschinellen Lernens – die sich für diese spezielle Fragestellung hervorragend eigneten – konnten die Forschenden Unterschiede in den chemischen Fingerabdrücken der beiden Teilchenklassen ausmachen. «Während künstlich hergestellte Nanopartikel oft aus einer einzigen Verbindung bestehen, enthalten natürliche Nanopartikel meist noch eine Reihe von zusätzlichen chemischen Elementen», erklärt Alexander Gundlach-Graham, Postdoc in Günthers Gruppe.

Die neue Messmethode ist sehr empfindlich: Die Wissenschaftler konnten damit künstliche Partikel in Proben mit bis zu hundertmal mehr natürlichen Teilchen messen.

Literaturhinweise

Sani-Kast N, Labille J, Ollivier P, Slomberg D, Hungerbühler K, Scheringer M: A network perspective reveals decreasing material diversity in studies on nanoparticle interactions with dissolved organic matter. PNAS 2017, 114: E1756-E1765, doi: 10.1073/pnas.1608106114 [http://dx.doi.org/10.1073/pnas.1608106114]

Praetorius A, Gundlach-Graham A, Goldberg E, Fabienke W, Navratilova J, Gondikas A, Kaegi R, Günther D, Hofmann T, von der Kammer F: Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environonmental Science: Nano 2017, 4: 307-314, doi: 10.1039/c6en00455e [http://dx.doi.org/10.1039/c6en00455e]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2017/04/nanopartik...

Hochschulkommunikation | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie