Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanomaterialen: Wie man Ringe von Ketten trennt

06.12.2017

Was ist der Unterschied zwischen einer langen Kette und einem Ring aus dem gleichen Material? Die molekulare Zusammensetzung ist identisch, jedoch besitzen beide Strukturen von einem mathematischen Standpunkt aus gesehen unterschiedliche Topologien – ringförmig und linear. Dieser Unterschied ist auf makroskopischer Ebene ohne Probleme erkennbar. Wie aber Nano- und Mikromoleküle aus dem gleichen Material unterschieden werden können, haben die PhysikerInnen Lisa Weiss und Christos Likos von der Universität Wien sowie Arash Nikoubashman von der Johannes-Gutenberg-Universität Mainz untersucht. Die Ergebnisse öffnen den Weg zu neuen Materialien.

Die "rein mathematische Eigenschaft" – linear oder ringförmig – kann weitreichende Folgen in der Welt der Materialphysik haben. Da ringförmige Moleküle kein freies, angreifbares Ende besitzen, sind diese widerstandsfähiger und weniger verschränkt als lineare Ketten.


Die einzelnen grünen Punkte repräsentieren die anziehenden Stellen im Kanal, Ringe sind in rot dargestellt, lineare Ketten in blau. Dazu indiziert ein Pfeil, die Rollbewegung der Ringe.

Copyright: Lisa Weiß


Dem Team um Lisa Weiß ist es gelungen, chemisch identische Makromoleküle voneinander zu trennen.

Copyright: Oleg Domanov

Das nutzt die Natur beispielsweise im Fall von RNA und DNA um zu vermeiden, dass diese Moleküle abgebaut werden: Dabei hängen nicht nur biologische Funktionen von dem kleinen Unterschied Ring oder Kette ab, sondern auch im fließenden Zustand zeigen beide Strukturen und deren Mischungen ein deutlich unterschiedliches Verhalten.

Dieses Phänomen zeigt sich etwa auch beim Umrühren eines Topfes mit Spaghetti, die hier eine Analogie für lineare Moleküle sind: Einzelne Nudeln beginnen sich teilweise in Flussrichtung auszurichten, dennoch bleiben sie stark verschlungen. Wird ringförmige Pasta verwendet, man kann sich diese Pasta als Spaghetti mit zusammengeklebten Enden vorstellen, die weniger verschränkt ist, so ist eine Ausrichtung in Flussrichtung einfacher und der Topf mit Pasta lässt sich leichter umrühren.

Allerdings kann man eine Mischung beider Strukturen auch im Kochtopf nicht leicht in hoher Reinheit voneinander trennen, da die zu Grunde liegenden Bausteine aus dem gleichen Material aufgebaut sind. Beide Nudeltopologien bestehen aus dem gleichen Teig: Ein Versuch, die zwei Strukturen durch chemische Methoden zu trennen, ist hoffnungslos.

So muss jede Nudel einzeln herausgefischt werden um zu unterscheiden, ob es eine ringförmige Nudel oder ein Spaghetto ist. Da ein solcher Prozess auf mikroskopischer Ebene nicht möglich ist, ist die Entwicklung neuer Materialien sowie die Analyse der Topologie von biologischen Molekülen ohne neue Trennungsverfahren schwierig.

Die ForscherInnen der Universität Wien und der Johannes-Gutenberg-Universität Mainz haben nun eine automatisierbare Strategie entwickelt, die ringförmige Moleküle sehr zuverlässig von ihrem linearen Gegenstück trennt. In Computersimulationen zeigten sie, dass mikroskopische Kanäle mit Stellen, die die einzelnen Bausteine von Ketten und Ringen gleichermaßen anziehen, geeignet sind, um Ringe von Ketten zu trennen. "Dabei werden lineare Ketten immobilisiert, wo hingegen Ringe 'rollen'.

Diese Rollbewegung ist nur für die Ringtopologie möglich, da sie eine geschlossene Konturlinie besitzen", erklärt Lisa Weiß vom Institut für Computergestützte Physik an der Universität Wien. Um den Filter schließlich von den dort haftenden Ketten zu reinigen, spülten die WissenschafterInnen sie mit einer Flüssigkeit, in der die Polymere nicht löslich sind, wie beispielsweise Öl in Wasser, einfach ab. Dadurch zieht sich die Kette zusammen und ändert ihre Form von einem Stäbchen zu einem Tröpfchen, welches nicht mehr an der flachen Wand kleben kann. Der Fluss reißt das Tröpfchen schließlich einfach mit und der Filter ist gereinigt.

Das Projekt wurde durch die EU-Initiative Horizon 2020 im Rahmen des Marie-Skłodowska-Curie-Netzwerks Nanotrans gefördert.

Publikation in ACS Macro Letters:
Lisa B. Weiss, Arash Nikoubashman und Christos N. Likos: Topology-Sensitive Microfluidic Filter for Polymers of Varying Stiffness. In Macro Letters (2017)
http://dx.doi.org/10.1021/acsmacrolett.7b00768

Weitere Infos zu Nanotrans: http://www.etn-nanotrans.eu/index.php

Wissenschaftliche Kontakte
Univ.-Prof. Dipl.-Ing. Dr. Christos Likos
Computergestützte Physik
Universität Wien
1090 Wien, Sensengasse 8/13
T +43-1-4277-732 30
M +43-664-60277-732 30
christos.likos@univie.ac.at
https://comp-phys.univie.ac.at/research/research-likos/

Lisa Weiß, MSc
Computergestützte Physik
Universität Wien
1090 Wien, Sensengasse 8/15
T +43-1-4277-732 23
lisa.weiss@univie.ac.at

Rückfragehinweis
Stephan Brodicky
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 41
stephan.brodicky@univie.ac.at

Offen für Neues. Seit 1365.
Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.500 MitarbeiterInnen, davon 6.600 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 94.000 nationale und internationale Studierende inskribiert. Mit 174 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at

Weitere Informationen:

http://dx.doi.org/10.1021/acsmacrolett.7b00768

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics