Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanokapseln für die künstliche Photosynthese

03.11.2009
Die Photosynthese der Pflanzen nachahmen? Wenn das gelänge, hätte die Menschheit einige Sorgen weniger. Chemiker von der Uni Würzburg haben auf dem Weg zur künstlichen Photosynthese jetzt Fortschritte erzielt.

Faszinierend komplex ist die Struktur, die an der Universität Würzburg in den Labors der Organischen Chemie entwickelt wurde: Tausende von gleichartigen Molekülen drängen sich zu einer Kapsel zusammen, die mit einer anderen Sorte von Molekülen gefüllt ist. Nur 20 bis 50 Nanometer beträgt der Durchmesser einer Kapsel - das ist ein Zehntausendstel eines Stecknadelkopfes.

Derart aufwändige Gebilde sind in der Chemie nicht gerade alltäglich. Kein Wunder also, dass die Würzburger Nanokapseln in der November-Ausgabe der Zeitschrift "Nature Chemistry" auf der Titelseite präsentiert werden. Außerdem können sie etwas, das für chemisch synthetisierte Moleküle bislang nicht beschrieben ist.

Eingekapselte Moleküle übertragen Energie

Die Nanokapseln besitzen eine Eigenschaft, die bei der Photosynthese der Pflanzen wichtig ist: Die in der Kapsel liegenden Moleküle absorbieren Lichtenergie und geben einen Teil davon in Form von Fluoreszenzlicht wieder ab. Den anderen Teil aber übertragen sie mittels Energietransfer auf die Kapselmoleküle, die daraufhin ebenfalls Fluoreszenzlicht ausschicken.

Bei der Photosynthese geschieht - vereinfacht gesagt - nichts anderes: Moleküle fangen die Energie des Sonnenlichts ein und übertragen sie in einem komplizierten Prozess auf andere Moleküle, bis die Energie am Ende chemisch gebunden ist: Die Kraft der Sonne steckt dann in wertvollen Kohlenhydraten, aus denen Pflanzen, Tiere und Menschen ihre Lebensenergie schöpfen.

Prinzipiell sollten sich die Nanokapseln daher als Bausteine für eine künstliche Photosynthese-Maschine eignen. "Das Licht würden sie sogar wesentlich effizienter nutzen als Pflanzen, weil ihre synthetischen Doppelschichtmembranen zu hundert Prozent aus photoaktivem Material bestehen", sagt Professor Frank Würthner.

Wozu künstliche Photosynthese gut ist

Warum die Forschung nach der künstlichen Photosynthese strebt? Pflanzen verbrauchen bei der Photosynthese den "Klimakiller" Kohlendioxid. Angesichts der globalen Erwärmung sehen viele Wissenschaftler eine künstliche Photosynthese als Möglichkeit, um das Treibhausgas Kohlendioxid in der Atmosphäre mengenmäßig zu reduzieren. Außerdem würden bei diesem Prozess wertvolle Rohstoffe entstehen: Zucker, Stärke und das Gas Methan.

Einzigartiges Material für die Kapselhülle

Die Würzburger Nanokapseln bestehen aus einem einzigartigen Material. Entwickelt wurde es im Arbeitskreis von Frank Würthner auf der Basis so genannter amphiphiler Perylenbisimide. Gibt man den als Pulver isolierbaren Grundstoff in Wasser, bilden seine Moleküle dort automatisch so genannte Vesikel, die aber noch nicht beständig sind. Erst durch eine Photovernetzung mit Licht werden sie zu robusten Nanokapseln, die in wässriger Lösung stabil sind - egal welcher pH-Wert dort herrscht.

Bispyrene als Füllung der Kapseln

Die Füllung der Nanokapseln mit weiteren photoaktiven Molekülen ist dem chinesischen Gastwissenschaftler Dr. Xin Zhang gelungen. Als Stipendiat der Humboldt-Stiftung hält er sich derzeit im Arbeitskreis von Professor Würthner auf.

Zhang schleuste Bispyren-Moleküle in die Nanokapseln ein. Ihre Besonderheit: Sie verändern ihre Gestalt in Abhängigkeit von der Umgebung. Bei niedrigem pH-Wert, also in einer sauren Umgebung, nehmen sie eine langgestreckte Form an. Regt man sie mit UV-Licht an, strahlen sie blaues Fluoreszenzlicht aus.

Steigt der pH-Wert, klappen sich die Moleküle zusammen. In dieser Gestalt geben sie grünes Fluoreszenzlicht ab. In diesem Zustand regen die Bispyrene die Kapselhülle energetisch an - und die reagiert darauf mit roter Fluoreszenz.

Blau, grün und rot. Überlagern sich die drei Grundfarben, kommt dabei weiß heraus - wie bei einem Farbfernseher. So ist es auch bei den Nanokapseln: Bei einem pH-Wert von 9, also recht nahe beim Neutralpunkt, strahlen sie weißes Fluoreszenzlicht ab - "ein in der Sensorik bislang einmaliger Effekt, der wegweisend für das Design von Fluoreszenzsonden für die Lebenswissenschaften sein dürfte", so Professor Würthner.

Nanosonde für pH-Messungen

Die Würzburger Chemiker haben damit eine höchst empfindliche Nanosonde zur Hand: Denn über die Wellenlänge des Fluoreszenzlichts, das die Nanokapseln ausstrahlen, lässt sich der pH-Wert einer wässrigen Lösung mit nanoskaliger Ortsauflösung bestimmen.

Nicht nur für die künstliche Photosynthese kommen die Nanokapseln darum in Betracht, sondern auch für diagnostische Anwendungen: Zum Beispiel könnte man sie mit speziellen Oberflächenstrukturen ausstatten, die gezielt an Tumorzellen andocken und diese dann mittels Fluoreszenz sichtbar machen.

Beide möglichen Anwendungen sind Gegenstand weiterer Forschungsarbeiten am Lehrstuhl von Frank Würthner. Die hier beschriebenen Arbeiten wurden von der Deutschen Forschungsgemeinschaft gefördert.

"Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems", Xin Zhang, Stefanie Rehm, Marina M. Safont-Sempere & Frank Würthner, Nature Chemistry 1, 623 - 629 (2009), doi:10.1038/nchem.368

Kontakt
Prof. Dr. Frank Würthner, T (0931) 31-85340, wuerthner@chemie.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.nature.com/nchem/index.html
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie