Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanokapseln für die künstliche Photosynthese

03.11.2009
Die Photosynthese der Pflanzen nachahmen? Wenn das gelänge, hätte die Menschheit einige Sorgen weniger. Chemiker von der Uni Würzburg haben auf dem Weg zur künstlichen Photosynthese jetzt Fortschritte erzielt.

Faszinierend komplex ist die Struktur, die an der Universität Würzburg in den Labors der Organischen Chemie entwickelt wurde: Tausende von gleichartigen Molekülen drängen sich zu einer Kapsel zusammen, die mit einer anderen Sorte von Molekülen gefüllt ist. Nur 20 bis 50 Nanometer beträgt der Durchmesser einer Kapsel - das ist ein Zehntausendstel eines Stecknadelkopfes.

Derart aufwändige Gebilde sind in der Chemie nicht gerade alltäglich. Kein Wunder also, dass die Würzburger Nanokapseln in der November-Ausgabe der Zeitschrift "Nature Chemistry" auf der Titelseite präsentiert werden. Außerdem können sie etwas, das für chemisch synthetisierte Moleküle bislang nicht beschrieben ist.

Eingekapselte Moleküle übertragen Energie

Die Nanokapseln besitzen eine Eigenschaft, die bei der Photosynthese der Pflanzen wichtig ist: Die in der Kapsel liegenden Moleküle absorbieren Lichtenergie und geben einen Teil davon in Form von Fluoreszenzlicht wieder ab. Den anderen Teil aber übertragen sie mittels Energietransfer auf die Kapselmoleküle, die daraufhin ebenfalls Fluoreszenzlicht ausschicken.

Bei der Photosynthese geschieht - vereinfacht gesagt - nichts anderes: Moleküle fangen die Energie des Sonnenlichts ein und übertragen sie in einem komplizierten Prozess auf andere Moleküle, bis die Energie am Ende chemisch gebunden ist: Die Kraft der Sonne steckt dann in wertvollen Kohlenhydraten, aus denen Pflanzen, Tiere und Menschen ihre Lebensenergie schöpfen.

Prinzipiell sollten sich die Nanokapseln daher als Bausteine für eine künstliche Photosynthese-Maschine eignen. "Das Licht würden sie sogar wesentlich effizienter nutzen als Pflanzen, weil ihre synthetischen Doppelschichtmembranen zu hundert Prozent aus photoaktivem Material bestehen", sagt Professor Frank Würthner.

Wozu künstliche Photosynthese gut ist

Warum die Forschung nach der künstlichen Photosynthese strebt? Pflanzen verbrauchen bei der Photosynthese den "Klimakiller" Kohlendioxid. Angesichts der globalen Erwärmung sehen viele Wissenschaftler eine künstliche Photosynthese als Möglichkeit, um das Treibhausgas Kohlendioxid in der Atmosphäre mengenmäßig zu reduzieren. Außerdem würden bei diesem Prozess wertvolle Rohstoffe entstehen: Zucker, Stärke und das Gas Methan.

Einzigartiges Material für die Kapselhülle

Die Würzburger Nanokapseln bestehen aus einem einzigartigen Material. Entwickelt wurde es im Arbeitskreis von Frank Würthner auf der Basis so genannter amphiphiler Perylenbisimide. Gibt man den als Pulver isolierbaren Grundstoff in Wasser, bilden seine Moleküle dort automatisch so genannte Vesikel, die aber noch nicht beständig sind. Erst durch eine Photovernetzung mit Licht werden sie zu robusten Nanokapseln, die in wässriger Lösung stabil sind - egal welcher pH-Wert dort herrscht.

Bispyrene als Füllung der Kapseln

Die Füllung der Nanokapseln mit weiteren photoaktiven Molekülen ist dem chinesischen Gastwissenschaftler Dr. Xin Zhang gelungen. Als Stipendiat der Humboldt-Stiftung hält er sich derzeit im Arbeitskreis von Professor Würthner auf.

Zhang schleuste Bispyren-Moleküle in die Nanokapseln ein. Ihre Besonderheit: Sie verändern ihre Gestalt in Abhängigkeit von der Umgebung. Bei niedrigem pH-Wert, also in einer sauren Umgebung, nehmen sie eine langgestreckte Form an. Regt man sie mit UV-Licht an, strahlen sie blaues Fluoreszenzlicht aus.

Steigt der pH-Wert, klappen sich die Moleküle zusammen. In dieser Gestalt geben sie grünes Fluoreszenzlicht ab. In diesem Zustand regen die Bispyrene die Kapselhülle energetisch an - und die reagiert darauf mit roter Fluoreszenz.

Blau, grün und rot. Überlagern sich die drei Grundfarben, kommt dabei weiß heraus - wie bei einem Farbfernseher. So ist es auch bei den Nanokapseln: Bei einem pH-Wert von 9, also recht nahe beim Neutralpunkt, strahlen sie weißes Fluoreszenzlicht ab - "ein in der Sensorik bislang einmaliger Effekt, der wegweisend für das Design von Fluoreszenzsonden für die Lebenswissenschaften sein dürfte", so Professor Würthner.

Nanosonde für pH-Messungen

Die Würzburger Chemiker haben damit eine höchst empfindliche Nanosonde zur Hand: Denn über die Wellenlänge des Fluoreszenzlichts, das die Nanokapseln ausstrahlen, lässt sich der pH-Wert einer wässrigen Lösung mit nanoskaliger Ortsauflösung bestimmen.

Nicht nur für die künstliche Photosynthese kommen die Nanokapseln darum in Betracht, sondern auch für diagnostische Anwendungen: Zum Beispiel könnte man sie mit speziellen Oberflächenstrukturen ausstatten, die gezielt an Tumorzellen andocken und diese dann mittels Fluoreszenz sichtbar machen.

Beide möglichen Anwendungen sind Gegenstand weiterer Forschungsarbeiten am Lehrstuhl von Frank Würthner. Die hier beschriebenen Arbeiten wurden von der Deutschen Forschungsgemeinschaft gefördert.

"Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems", Xin Zhang, Stefanie Rehm, Marina M. Safont-Sempere & Frank Würthner, Nature Chemistry 1, 623 - 629 (2009), doi:10.1038/nchem.368

Kontakt
Prof. Dr. Frank Würthner, T (0931) 31-85340, wuerthner@chemie.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.nature.com/nchem/index.html
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Forscher vergleichen Biodiversitätstrends mit dem Aktienmarkt
06.12.2016 | Helmholtz-Zentrum für Umweltforschung - UFZ

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nährstoffhaushalt einer neuentdeckten “Todeszone” im Indischen Ozean auf der Kippe

06.12.2016 | Geowissenschaften

Entschlüsselung von Kommunikationswegen zwischen Tumor- und Immunzellen beim Eierstockkrebs

06.12.2016 | Medizin Gesundheit

Bioabbaubare Polymer-Beschichtung für Implantate

06.12.2016 | Materialwissenschaften