Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanodiscs: kleine Scheiben ganz groß

07.12.2016

Biophysiker, Biologen und Chemiker der Technischen Universität Kaiserslautern haben eine neue Art von Polymer/Lipid-Nanopartikeln entwickelt, mit denen Membranproteine im Reagenzglas und dennoch unter fast natürlichen Bedingungen untersucht werden können.

Membranproteine spielen viele essenzielle Rollen beim Stoff- und Informationsaustausch zwischen und innerhalb von Zellen. Fehlfunktionen dieser wichtigen Klasse von Biomolekülen führen oft zu schweren Krankheiten, weshalb Membranproteine sowohl in der Grundlagen- als auch in der Wirkstoffforschung intensiv erforscht werden.


Schematische Darstellung der Extraktion von Membranproteinen aus einer biologischen Membran (oben) unter Bildung von Nanodiscs (unten).

Eine große Hürde für in-vitro-Untersuchungen - also Studien im Reagenzglas unter genau kontrollierten Bedingungen - sind dabei die hohen Anforderungen, die Membranproteine an ihre Umgebung stellen. Da diese Moleküle sich in Wasser und ähnlichen polaren Flüssigkeiten nicht lösen lassen, sind Forscherinnen und Forscher auf sogenannte „membranmimetische“ Systeme angewiesen, die die natürliche Lipidumgebung mit einer wasserabweisenden Schicht zwischen zwei wasserzugänglichen Grenzflächen möglichst gut nachbilden.

Traditionellerweise kommen als membranmimetische Systeme entweder einige Nanometer kleine Mizellen oder größere Liposomen zum Einsatz. Mizellen sind im Wesentlichen kleine Fetttröpfchen, die sich aufgrund ihrer geringen Größe ideal für viele in-vitro-Methoden eignen, aber die komplexen Eigenschaften einer biologischen Membran leider nur schlecht wiedergeben.

Liposomen können das wesentlich besser, sind allerdings mit zahlreichen Labortechniken inkompatibel, da ihre Größe mit optisch-spektroskopischen Methoden interferiert, bei denen die Wechselwirkung von Licht mit Materie gemessen wird. Seit einigen Jahren setzen deshalb immer mehr Forscherinnen und Forscher auf Nanodiscs, also auf scheibenförmige membranmimetische Systeme im Nanometerbereich, die die vorteilhaften Eigenschaften von Mizellen und Liposomen in sich vereinen, indem sie eine Membranumgebung im kleinen Maßstab ausbilden (siehe Abbildung).

Wissenschaftlerinnen und Wissenschaftler der Technischen Universität Kaiserslautern haben neue Nanodiscs entwickelt, die von einem Polymer umschlossen und stabilisiert werden. Das Besondere daran ist, dass dieses Polymer im Gegensatz zu bisher verfügbaren Varianten keine aromatischen Reste enthält, also keine chemischen Bestandteile, die Licht im Ultraviolett-Bereich besonders stark absorbieren.

Außerdem ist das Polymer in der Lage, Proteine direkt aus zellulären Membranen zu extrahieren und dabei sowohl die Grundstruktur der Membran als auch die lokale Lipidzusammensetzung zu erhalten. Wie das Wissenschaftlerteam nun in der renommierten Fachzeitschrift Angewandte Chemie berichtet, ist es dadurch zum ersten Mal möglich, Membranproteine unmittelbar nach ihrer Extraktion in einer nanometerskaligen Lipidumgebung mithilfe von Ultraviolett-Spektroskopie zu untersuchen.

Originalveröffentlichung:
Deutsch: A. Oluwole, B. Danielczak, A. Meister, J. Babalola, C. Vargas, S. Keller. Angew. Chem. 2016, DOI: 10.1002/ange.201610778R1

Englisch: A. Oluwole, B. Danielczak, A. Meister, J. Babalola, C. Vargas, S. Keller. Angew. Chem. Int. Ed. 2016, DOI: 10.1002/anie.201610778R1

Abbildung:
Schematische Darstellung der Extraktion von Membranproteinen aus einer biologischen Membran (oben) unter Bildung von Nanodiscs (unten), in denen ein Polymer (grün) eine Lipiddoppelschicht (braun) mit eingebetteten Proteinen (andere Farben) umschließt.

Kontakt:
Prof. Dr. Sandro Keller
Molekulare Biophysik
Fachbereich Biologie
Technische Universität Kaiserslautern

Tel.: 0631/205-4908
E-Mail: sandro.keller@biologie.uni-kl.de

Dipl.-Volkswirt Thomas Jung | Technische Universität Kaiserslautern
Weitere Informationen:
http://www.uni-kl.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie