Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano statt Karat - Diamanten im Dienste der Wissenschaft

26.02.2009
Große, perfekte Diamanten sind bei Wissenschaftlern nicht gefragt. Bunt und winzig können sie sein und noch dazu defekt. Denn an Defektstellen können sich nanoskopisch kleine "Farbzentren" ausbilden, die bei der Entwicklung modernster Quanten-Computer oder der Quantenkryptographie eine Schlüsselrolle spielen.

Forschern vom Max-Planck-Institut für biophysikalische Chemie (Göttingen) ist nun erstmals gelungen, diese Farbzentren im Kristall hochaufgelöst aufzuspüren - und zwar ausgerechnet mit einem Lichtmikroskop. Mithilfe der STED (Stimulated Emission Depletion)-Mikroskopie konnten die Wissenschaftler selbst dicht gepackte einzelne Farbzentren identifizieren.


Fokus ultrascharf: Bei der Abbildung von Gitterdefekten in Diamantkristallen erreicht man mit der überauflösenden STED-Mikroskopie einen 28-mal schärferen fokalen Lichtfleck als mit herkömmlichen Fluoreszenzmikroskopie-Verfahren
Bild: Rittweger & Hell / MPIbpc

Der Diamant brilliert nicht nur als Schmuckstein: Techniker schätzen ihn längst als extrem harten Werkstoff, und zunehmend interessieren sich auch Wissenschaftler für den kostbaren Kristall. Auch wenn als Edelstein vor allem die farblose Variante glitzert - in der Wissenschaft sind es die weitaus billigeren, fluoreszierenden Diamanten, die Furore zu machen. Ihre Farbe beruht auf Fremdatomen im Diamantgitter, beispielsweise Stickstoff.

Geraten Stickstoff-Atome in die Nähe von Leerstellen im Kristallgitter, so bilden sich atomar kleine, leuchtende Defektstellen aus, denn in diesen Defektstellen können Elektronen - ganz ähnlich wie in Farbstoffmolekülen - mit Laserlicht angeregt werden. Fallen sie in ihren Grundzustand zurück, so wird die Anregungsenergie als Fluoreszenzlicht abgestrahlt. Dies und ihre Eigenschaft, atomar kleine Magnete auszubilden, machen Farbzentren in Diamanten für Forscher unterschiedlicher Disziplinen interessant.

So sollen Farbzentren in Diamanten in Zukunft als kleine Prozessoren in Quantencomputern zum Einsatz kommen, um bestimmte Rechenoperationen zu beschleunigen. Auch ihre Eignung bei der Verschlüsselung hochsensibler Daten wird derzeit erforscht. Doch haben die Farbzentren im Kristall in der Handhabung einen entscheidenden Nachteil: Einzelne von ihnen kann man nur mit einem Fluoreszenzmikroskop erkennen. Und das nur dann, wenn sie weiter entfernt sind als 200 Nanometer (millionstel Millimeter), denn das entspricht der Auflösungsgrenze des Lichtmikroskops.

Auflösung auf die Spitze getrieben

Der Arbeitsgruppe um Stefan Hell am Göttinger Max-Planck-Institut für biophysikalische Chemie ist es nun mittels STED (Stimulated Emission Depletion)-Mikroskopie gelungen, die ersten Bilder dicht gepackter einzelner Farbzentren eines Kristalls aufzunehmen. Dazu trieben die Forscher die Auflösung der STED-Mikroskopie buchstäblich auf die Spitze: auf 5.8 Nanometer. Farbzentren in Diamant, die nur Bruchteile des bisherigen Grenzabstands voneinander entfernt waren, konnten einzeln abgebildet und ihre Position bis auf 0,15 Nanometer bestimmt werden. Die Wissenschaftler haben damit ein Verfahren an der Hand, dicht gepackte Farbzentren einzeln zu adressieren, und zwar mit fokussiertem Licht - obwohl Licht und herkömmliche Optik bis vor kurzem aufgrund der Beugung dafür vollkommen ungeeignet schien. Für die weitere Erforschung und Anwendung dieser Farbzentren bedeutet dies ein entscheidender Fortschritt. Auch Kristallographen sollen von der Methode profitieren. Denn die atomare Anordnung in Kristallen lässt sich so gezielt lokal erforschen.

Neue Klasse von Fluoreszenzmarkern

Dass die Stickstoffatome nachleuchten, wenn man sie mit Laserblitzen beschießt, macht sie auch für die Fluoreszenz-Nanoskopie selbst interessant. Mit den fluoreszierenden Diamanten wollen die Forscher dem Nanokosmos lebender Zellen weitere Geheimnisse entlocken. Dazu muss man die Kristalle jedoch nanoskopisch klein kriegen - nur als winzige Nanopartikel lassen sie sich für die Markierung von Zellen verwenden. "Organische Fluoreszenz-Farbstoffe, die wir bisher routinemäßig bei STED einsetzen, haben den Nachteil, dass sie flackern und am Ende ausbleichen", sagt Eva Rittweger, Doktorandin in der Arbeitsgruppe. "Dagegen bleiben Farbzentren im Diamant auch im STED-Mikroskop äußerst photostabil."

Forschergruppen in Würzburg, Stuttgart sowie in Asien und Amerika arbeiten daran, Nano-Diamanten auch in der biologischen und medizinischen Grundlagenforschung einzusetzen. "Wenn es gelänge, die Eigenschaften im Kristall auf winzige Diamant-Nanokristalle zu übertragen, hätte man automatisch eine Fluoreszenz-Nanoskopie ohne Bleichen - und damit einen weiteren sehr leistungsfähigen Zugang zur Nanoskala der Zelle", so Stefan Hell.

Originalveröffentlichung:
Eva Rittweger, Kyu Young Han, Scott E. Irvine, Christian Eggeling, and Stefan W. Hell. STED microscopy reveals crystal colour centres wit nanometric resolution. Nature Photonics, Online-Publikation, 22. Februar 2009 | doi:10.1038/nphoton.2009.2
Ansprechpartner:
Prof. Dr. Stefan W. Hell, Abteilung NanoBiophotonik
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201 -2500, -2503
E-Mail: shell@gwdg.de
Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201 -1304
E-Mail: crotte@gwdg.de

Dr. Carmen Rotte | idw
Weitere Informationen:
http://www.mpibpc.mpg.de/groups/pr/PR/2009/09_06/
http://www.mpibpc.mpg.de/groups/hell

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise