Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano statt Karat - Diamanten im Dienste der Wissenschaft

26.02.2009
Große, perfekte Diamanten sind bei Wissenschaftlern nicht gefragt. Bunt und winzig können sie sein und noch dazu defekt. Denn an Defektstellen können sich nanoskopisch kleine "Farbzentren" ausbilden, die bei der Entwicklung modernster Quanten-Computer oder der Quantenkryptographie eine Schlüsselrolle spielen.

Forschern vom Max-Planck-Institut für biophysikalische Chemie (Göttingen) ist nun erstmals gelungen, diese Farbzentren im Kristall hochaufgelöst aufzuspüren - und zwar ausgerechnet mit einem Lichtmikroskop. Mithilfe der STED (Stimulated Emission Depletion)-Mikroskopie konnten die Wissenschaftler selbst dicht gepackte einzelne Farbzentren identifizieren.


Fokus ultrascharf: Bei der Abbildung von Gitterdefekten in Diamantkristallen erreicht man mit der überauflösenden STED-Mikroskopie einen 28-mal schärferen fokalen Lichtfleck als mit herkömmlichen Fluoreszenzmikroskopie-Verfahren
Bild: Rittweger & Hell / MPIbpc

Der Diamant brilliert nicht nur als Schmuckstein: Techniker schätzen ihn längst als extrem harten Werkstoff, und zunehmend interessieren sich auch Wissenschaftler für den kostbaren Kristall. Auch wenn als Edelstein vor allem die farblose Variante glitzert - in der Wissenschaft sind es die weitaus billigeren, fluoreszierenden Diamanten, die Furore zu machen. Ihre Farbe beruht auf Fremdatomen im Diamantgitter, beispielsweise Stickstoff.

Geraten Stickstoff-Atome in die Nähe von Leerstellen im Kristallgitter, so bilden sich atomar kleine, leuchtende Defektstellen aus, denn in diesen Defektstellen können Elektronen - ganz ähnlich wie in Farbstoffmolekülen - mit Laserlicht angeregt werden. Fallen sie in ihren Grundzustand zurück, so wird die Anregungsenergie als Fluoreszenzlicht abgestrahlt. Dies und ihre Eigenschaft, atomar kleine Magnete auszubilden, machen Farbzentren in Diamanten für Forscher unterschiedlicher Disziplinen interessant.

So sollen Farbzentren in Diamanten in Zukunft als kleine Prozessoren in Quantencomputern zum Einsatz kommen, um bestimmte Rechenoperationen zu beschleunigen. Auch ihre Eignung bei der Verschlüsselung hochsensibler Daten wird derzeit erforscht. Doch haben die Farbzentren im Kristall in der Handhabung einen entscheidenden Nachteil: Einzelne von ihnen kann man nur mit einem Fluoreszenzmikroskop erkennen. Und das nur dann, wenn sie weiter entfernt sind als 200 Nanometer (millionstel Millimeter), denn das entspricht der Auflösungsgrenze des Lichtmikroskops.

Auflösung auf die Spitze getrieben

Der Arbeitsgruppe um Stefan Hell am Göttinger Max-Planck-Institut für biophysikalische Chemie ist es nun mittels STED (Stimulated Emission Depletion)-Mikroskopie gelungen, die ersten Bilder dicht gepackter einzelner Farbzentren eines Kristalls aufzunehmen. Dazu trieben die Forscher die Auflösung der STED-Mikroskopie buchstäblich auf die Spitze: auf 5.8 Nanometer. Farbzentren in Diamant, die nur Bruchteile des bisherigen Grenzabstands voneinander entfernt waren, konnten einzeln abgebildet und ihre Position bis auf 0,15 Nanometer bestimmt werden. Die Wissenschaftler haben damit ein Verfahren an der Hand, dicht gepackte Farbzentren einzeln zu adressieren, und zwar mit fokussiertem Licht - obwohl Licht und herkömmliche Optik bis vor kurzem aufgrund der Beugung dafür vollkommen ungeeignet schien. Für die weitere Erforschung und Anwendung dieser Farbzentren bedeutet dies ein entscheidender Fortschritt. Auch Kristallographen sollen von der Methode profitieren. Denn die atomare Anordnung in Kristallen lässt sich so gezielt lokal erforschen.

Neue Klasse von Fluoreszenzmarkern

Dass die Stickstoffatome nachleuchten, wenn man sie mit Laserblitzen beschießt, macht sie auch für die Fluoreszenz-Nanoskopie selbst interessant. Mit den fluoreszierenden Diamanten wollen die Forscher dem Nanokosmos lebender Zellen weitere Geheimnisse entlocken. Dazu muss man die Kristalle jedoch nanoskopisch klein kriegen - nur als winzige Nanopartikel lassen sie sich für die Markierung von Zellen verwenden. "Organische Fluoreszenz-Farbstoffe, die wir bisher routinemäßig bei STED einsetzen, haben den Nachteil, dass sie flackern und am Ende ausbleichen", sagt Eva Rittweger, Doktorandin in der Arbeitsgruppe. "Dagegen bleiben Farbzentren im Diamant auch im STED-Mikroskop äußerst photostabil."

Forschergruppen in Würzburg, Stuttgart sowie in Asien und Amerika arbeiten daran, Nano-Diamanten auch in der biologischen und medizinischen Grundlagenforschung einzusetzen. "Wenn es gelänge, die Eigenschaften im Kristall auf winzige Diamant-Nanokristalle zu übertragen, hätte man automatisch eine Fluoreszenz-Nanoskopie ohne Bleichen - und damit einen weiteren sehr leistungsfähigen Zugang zur Nanoskala der Zelle", so Stefan Hell.

Originalveröffentlichung:
Eva Rittweger, Kyu Young Han, Scott E. Irvine, Christian Eggeling, and Stefan W. Hell. STED microscopy reveals crystal colour centres wit nanometric resolution. Nature Photonics, Online-Publikation, 22. Februar 2009 | doi:10.1038/nphoton.2009.2
Ansprechpartner:
Prof. Dr. Stefan W. Hell, Abteilung NanoBiophotonik
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201 -2500, -2503
E-Mail: shell@gwdg.de
Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201 -1304
E-Mail: crotte@gwdg.de

Dr. Carmen Rotte | idw
Weitere Informationen:
http://www.mpibpc.mpg.de/groups/pr/PR/2009/09_06/
http://www.mpibpc.mpg.de/groups/hell

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher sehen Biomolekülen bei der Arbeit zu
05.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten