Nano- und Pikokräfte messen

Wer herzkrank ist, dessen Herzmuskelzellen sind weniger elastisch. Warum das so ist, wird zurzeit noch erforscht, ebenso wie mögliche Ansatzpunkte für Medikamente.

In Zukunft können die Mediziner die elastischen Eigenschaften der Herzmuskelzellen genauer und zuverlässiger messen. Eine neue in der Physikalisch-Technischen Bundesanstalt (PTB) entwickelte Messeinrichtung für den Kraftbereich von 10 µN bis 1 pN könnte ihnen dabei helfen.

Kleinste Kräfte bis hinunter zu wenigen Nano- oder gar Pikonewton zu messen ist eine Aufgabe für Mediziner oder Biologen, die einzelne Zellen untersuchen, aber auch für Chemiker, die die Bindungskräfte zwischen einzelnen Molekülen ermitteln wollen. Und auch in der Industrie werden immer mehr Kunststoff-Mikroteile eingesetzt, die beim taktilen Messen mit zu großer Antastkraft leicht verkratzen. Daher ergeben sich neue Anforderungen an die entsprechenden Messgeräte wie Tastschnittgeräte oder Rasterkraftmikroskope: Ihre Tastkräfte müssen immer genauer und zuverlässiger eingestellt werden. Vergleichbare Anforderungen gibt es auch in der Mikroelektronik bei der Bestimmung der Materialeigenschaften von Mikro- und Nano-elektromechanischen Systemen, die zunehmend Einzug in Alltagsprodukte wie Handys, MP3-Player, PC-Peripherie und PKWs halten.

Um derartig kleine Kräfte zu messen, wurde in der PTB ein Prototypsystem entwickelt und erfolgreich erprobt. Sein Messprinzip beruht auf einem Scheibenpendel, das von der zu messenden Kraft ausgelenkt wird. Die Auslenkung wird elektrostatisch mit Hilfe vom äußeren Kondensatorelektroden kompensiert, gemessen wird die aufzuwendende Spannung. Zu dieser elektrostatischen Kraftkompensation kommt die elektrostatische Steifigkeitsreduktion: Indem die Eigensteifigkeit des Pendels von 0,13 N/m auf 0,007 N/m verringert wird, erhöht sich die Empfindlichkeit des Systems. Um störende seismische Schwingungen und thermische Driften zu kompensieren, ist neben dem eigentlichen Messsystem ein zweites, identisches Referenzsystem angebracht.

Erste Langzeitmessungen an Luft über einen Zeitraum von 3 Stunden ergaben ein Rauschen (Standardabweichung) der Messeinrichtung von 160 pN (Tiefpassfiltergrenzfrequenz: 0,02 Hz). Als erste Kraftmessung an der Grenze der Empfindlichkeit des Prototypsystems wurde die Kraft bestimmt, die der Lichtdruck eines He-Ne-Lasers mit einer Leistung von 7 mW ausübt. Der gemessene Wert von 38 pN ist nur um 9 pN kleiner als die (aus Lichtleistung des Lasers und Reflexionsfaktor des Scheibenpendels) berechnete Kraft.

Die neue Anlage ergänzt die kürzlich in Betrieb genommene PTB-Kraftnormalmesseinrichtung zur rückführbaren Kalibrierung von Kräften im mN-Bereich (PTB-news 08.2: http://www.ptb.de/de/publikationen/news/html/news082/artikel/0822.htm), die auf einem anderen Messprinzip basiert. Sie soll zukünftig noch für die Messung von pN-Kräften optimiert werden, wofür allerdings ihre Empfindlichkeit noch weiter verbessert werden muss. Theoretische Analysen ergaben eine erreichbare Kraftauflösung von 1 pN. Die wesentliche Herausforderung besteht dabei in der Fertigung möglichst identischer Mess- und Referenzscheibenpendelsysteme mit möglichst idealen Oberflächen (Ebenheiten im Bereich von 100 nm). Ein weiterer Forschungsschwerpunkt ist die Kalibrierung von geeigneten Krafttransfernormalen, die dann in der Industrie zur Kalibrierung kleinster Kräfte eingesetzt werden können.

Ansprechpartner:
U. Brand, PTB-Arbeitsgruppe 5.11 Nanokraftmesstechnik für taktile Sensoren, Tel.: (0531) 592-5111, E-Mail: uwe.brand@ptb.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer