Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Origami mit Erbgut-Molekülen

07.08.2009
Wissenschaftler der Technischen Universität München (TUM) und der Harvard University haben neue Werkzeuge entwickelt, um aus kurzen DNA-Molekülen Strukturen mit komplexen Windungen und Krümmungen zu formen.

In der aktuellen Ausgabe der Zeitschrift Science berichten sie über eine Reihe von Experimenten in der sie DNA Origami-ähnlich in dreidimensionale Objekte falten konnten, inklusive einer kugelförmigen Gerüstkonstruktion mit nur 50 Nanometer Durchmesser.

"Unser Ziel war es herauszufinden, ob wir DNA so programmieren können dass sie sich selbst in Formen mit vorgegebenen Krümmungen und Windungen in der Größenordnung weniger Nanometer anordnet," erklärt der Biophysiker Hendrik Dietz, Professor an der Technischen Universität München. Er arbeitete an diesen Experimenten zusammen mit Professor William Shih und Dr. Shawn Douglas von der Harvard University.

"Es hat funktioniert," fügt er hinzu, "und wir können jetzt viele verschiedene dreidimensionale Bauteile im Nanobereich herstellen. Etwa Zahnräder oder gebogene Rohre und Kapseln." Diese Bauteile hoffen die Forscher zu größeren, komplexeren Funktionseinheiten kombinieren zu können.

Als Medium für Konstruktionen im Nanobereich hat DNA zwei Vorteile: Sie ist ein intelligenter Werkstoff, nicht nur robust und zugleich flexibel sondern auch programmierbar. Zudem ist sie durch jahrzehntelange Arbeit sehr gut erforscht. Die elementaren Werkzeuge die Dietz, Douglas und Shih anwenden sind die programmierbare Selbstorganisation - das Leiten der DNA Stränge in bestimmte vorgegebene Bündel von quer verknüpften Doppelhelizes - und gezieltes Einfügen und Herausnehmen von Basenpaaren. Letztere geben in solchen Bündeln die gewünschte Windung oder Krümmung vor. Die Forscher können nicht nur festlegen ob die Windung rechts oder linksherum erfolgen soll sondern sie können die entstehenden Formen präzise und quantitative kontrollieren und ereichen extrem enge Krümmungsradien von 6 Nanometern.

Die Werkzeuge die sie entwickelt haben beinhalten eine graphische Software die hilft, bestimmte Design-Konzepte in die dafür nötige DNA-Programmierung zu übersetzen. Dreidimensionale Objekte werden durch die Feinabstimmung von Anzahl, Anordnung und Länge der Helizes erzeugt.

In ihrer Publikation präsentieren die Wissenschaftler eine große Auswahl an Nanogebilden und beschreiben im Detail wie sie geplant, hergestellt und validiert wurden. "Viele fortgeschrittene, makroskopische Maschinen benötigen seltsam geformte Teile um zu funktionieren," sagt Dietz, "und wir haben die Werkzeuge sie zu fertigen. Aber momentan können wir keine so komplizierten Gebilde generieren wie die Beine einer Ameise oder - noch viel kleiner - 10 Nanometer große chemische Fabriken wie ein Enzym. Wir erwarten einen großen Nutzen, wenn wir nur miniaturisierte Maschinen im Nanobereich bauen könnten, aus Materialien die zuverlässig in unseren Körperzellen arbeiten - aus Biomolekülen wie DNA."

Originalpublikation:
Folding DNA into Twisted and Curved Nanoscale Shapes,
Hendrik Dietz, Shawn M. Douglas, und William M. Shih, Science, 7. August 2009.
Kontakt:
Prof. Hendrik Dietz
Technische Universität München
Physik-Department
James-Franck-Str. 1, D 85748 Garching
Tel. +49 89 289 12539
Fax: +49 89 289 12523
E-mail: dietz@ph.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://portal.mytum.de/welcome
http://bionano.physik.tu-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit