Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Origami mit Erbgut-Molekülen

07.08.2009
Wissenschaftler der Technischen Universität München (TUM) und der Harvard University haben neue Werkzeuge entwickelt, um aus kurzen DNA-Molekülen Strukturen mit komplexen Windungen und Krümmungen zu formen.

In der aktuellen Ausgabe der Zeitschrift Science berichten sie über eine Reihe von Experimenten in der sie DNA Origami-ähnlich in dreidimensionale Objekte falten konnten, inklusive einer kugelförmigen Gerüstkonstruktion mit nur 50 Nanometer Durchmesser.

"Unser Ziel war es herauszufinden, ob wir DNA so programmieren können dass sie sich selbst in Formen mit vorgegebenen Krümmungen und Windungen in der Größenordnung weniger Nanometer anordnet," erklärt der Biophysiker Hendrik Dietz, Professor an der Technischen Universität München. Er arbeitete an diesen Experimenten zusammen mit Professor William Shih und Dr. Shawn Douglas von der Harvard University.

"Es hat funktioniert," fügt er hinzu, "und wir können jetzt viele verschiedene dreidimensionale Bauteile im Nanobereich herstellen. Etwa Zahnräder oder gebogene Rohre und Kapseln." Diese Bauteile hoffen die Forscher zu größeren, komplexeren Funktionseinheiten kombinieren zu können.

Als Medium für Konstruktionen im Nanobereich hat DNA zwei Vorteile: Sie ist ein intelligenter Werkstoff, nicht nur robust und zugleich flexibel sondern auch programmierbar. Zudem ist sie durch jahrzehntelange Arbeit sehr gut erforscht. Die elementaren Werkzeuge die Dietz, Douglas und Shih anwenden sind die programmierbare Selbstorganisation - das Leiten der DNA Stränge in bestimmte vorgegebene Bündel von quer verknüpften Doppelhelizes - und gezieltes Einfügen und Herausnehmen von Basenpaaren. Letztere geben in solchen Bündeln die gewünschte Windung oder Krümmung vor. Die Forscher können nicht nur festlegen ob die Windung rechts oder linksherum erfolgen soll sondern sie können die entstehenden Formen präzise und quantitative kontrollieren und ereichen extrem enge Krümmungsradien von 6 Nanometern.

Die Werkzeuge die sie entwickelt haben beinhalten eine graphische Software die hilft, bestimmte Design-Konzepte in die dafür nötige DNA-Programmierung zu übersetzen. Dreidimensionale Objekte werden durch die Feinabstimmung von Anzahl, Anordnung und Länge der Helizes erzeugt.

In ihrer Publikation präsentieren die Wissenschaftler eine große Auswahl an Nanogebilden und beschreiben im Detail wie sie geplant, hergestellt und validiert wurden. "Viele fortgeschrittene, makroskopische Maschinen benötigen seltsam geformte Teile um zu funktionieren," sagt Dietz, "und wir haben die Werkzeuge sie zu fertigen. Aber momentan können wir keine so komplizierten Gebilde generieren wie die Beine einer Ameise oder - noch viel kleiner - 10 Nanometer große chemische Fabriken wie ein Enzym. Wir erwarten einen großen Nutzen, wenn wir nur miniaturisierte Maschinen im Nanobereich bauen könnten, aus Materialien die zuverlässig in unseren Körperzellen arbeiten - aus Biomolekülen wie DNA."

Originalpublikation:
Folding DNA into Twisted and Curved Nanoscale Shapes,
Hendrik Dietz, Shawn M. Douglas, und William M. Shih, Science, 7. August 2009.
Kontakt:
Prof. Hendrik Dietz
Technische Universität München
Physik-Department
James-Franck-Str. 1, D 85748 Garching
Tel. +49 89 289 12539
Fax: +49 89 289 12523
E-mail: dietz@ph.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://portal.mytum.de/welcome
http://bionano.physik.tu-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften