Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Motor mit Lichtschalter

11.05.2011
Lichtaktivierbares Myosin für Echtzeituntersuchungen in Zellen

Molekulare „Motoren“ sind die Basis für die meisten biologischen Bewegungen. Sie setzen Zellbestandteile, ganze Zellen oder auch unsere Muskeln zielgerichtet in Bewegung. Barbara Imperiali und ein Team vom Massachusetts Institute of Technology (Cambridge, USA), der University of Virginia (Charlottesville, USA) und den National Institutes of Health (USA) haben das Motorprotein Myosin nun mit einem „Anschaltknopf“ versehen, der durch Licht ausgelöst wird. Wie die Wissenschaftler in der Zeitschrift Angewandte Chemie berichten, sollen damit zelluläre Prozesse, an denen Myosin beteiligt ist, in Echtzeit verfolgt werden.

Damit sich unsere Muskeln zusammenziehen, müssen zwei Sorten fadenförmiger Proteine, Myosin und Actin, wechselwirken. Angetrieben durch Spaltung des zellulären „Treibstoffs“ Adenosintriphosphat (ATP) „hangeln“ sich die „Köpfchen“ der Myosinmoleküle dabei an den Actinfilamenten entlang. In Nicht-Muskelzellen sorgt Myosin beispielsweise bei der Zellteilung dafür, dass sich die Zelle einschnürt. Myosin besteht aus mehreren verschiedenen Proteinketten. Die Aktivität des nicht-muskulären Myosins wird durch dessen so genannte regulatorische leichte Kette reguliert. Sobald eine Phosphatgruppe an eine bestimmte Bindungsstelle (Ser19) der leichten Kette bindet (Phosphorylierung), wird Myosin aktiviert. Die Aktivität lässt sich durch Bindung einer zweiten Phosphatgruppe an benachbarter Stelle (Thr18) weiter verstärken.

Myosin wurde bereits intensiv untersucht. Was genau nach Aktivierung des Moleküls in lebenden Zellen passiert, konnte bisher jedoch nicht räumlich und zeitlich aufgelöst untersucht werden. Das Forscherteam hat nun einen Kniff gefunden, wie sich solche Echtzeituntersuchungen realisieren lassen: Ein Myosinmolekül, das sich mit Licht definiert „anknipsen“ lässt. Dazu stellten die Forscher per Proteinsemisynthese eine künstliche regulatorische Kette her, die bereits eine bzw. zwei Phosphatgruppen trägt. Der Trick: Über die Phosphatgruppen wird ein „Käfig“ gestülpt. In dieser Form ist die Kette inaktiv. Bestrahlung mit Licht spaltet den Käfig ab, die regulatorische Kette ist nun auf „an“ geschaltet und aktiviert ihrerseits das Myosin.

Die Forscher tauschten die natürliche leichte Kette von Myosinmolekülen gegen die künstliche aus und schleusten dieses photoaktivierbare Myosin in Zellen ein. Bestrahlung aktiviert es dann zu einem definierten Zeitpunkt und an definierter Stelle. Auf diese Weise wollen die Wissenschaftler nun in Echtzeit beobachten, was nach einer Aktivierung von Myosin in einer Zelle passiert.

Autor: Barbara Imperiali, Massachusetts Institute of Technology, Cambridge (USA), http://web.mit.edu/imperiali

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201100674

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Feinste organische Partikel in der Atmosphäre sind häufiger glasartig als flüssige Öltröpfchen
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Darmflora beeinflusst das Altern
21.04.2017 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten