Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Maßband klärt Organisation der Zellmembran auf

25.06.2014

Freiburger Biologen vermessen erstmals die Distanzen und die Anordnung von Membranmolekülen im Nanometerbereich

Prof. Dr. Michael Reth vom Institut für Biologie III der Universität Freiburg und vom Max-Planck-Institut für Immunbiologie und Epigenetik hat nach mehr als zehn Jahren Suche eine Methode gefunden, um die Organisation von Zellmembranen im Bereich weniger Nanometer zu untersuchen.


Auf ruhenden Zellen (A) liegt der B-Zell-Antigenrezeptor als Gruppe vor und das Nanomaßband gibt rote Lichtsignale frei (Bild unten). Das Signal verschwindet, wenn ein Antigen die B-Zellen aktiviert (B). Die Kinase Syk öffnet den Rezeptor. Fotos: Michael Reth

Sie erlaubt ihm zu zeigen, wie sich der Antigenrezeptor, mit dem B-Zellen des Immunsystems Fremdstoffe erkennen, nach seiner Aktivierung verändert. Demnach streben die Komponenten des Rezeptors auseinander und kommen nicht – wie bislang vermutet – zusammen. Umlagerungen von Rezeptoren auf Membranen von Zellen finden im Bereich von zehn bis 40 Nanometern statt.

Im Lichtmikroskop jedoch sind nur Objekte zu beobachten, die mindestens 250 Nanometer auseinander liegen. Durch den Einsatz von Antikörperfragmenten, so genannten Fabs, verbesserten Reth, Sprecher des Exzellenzclusters BIOSS Centre for Biological Signalling Studies der Universität Freiburg, und sein Team die Auflösungsschärfe des proximity ligation assay (PLA). Diese Technik bringt Moleküle nur dann zum Leuchten, wenn sie nahe beieinander liegen. Dieses Leuchten kann Reth im Mikroskop nachweisen.

Mit der genaueren Fab-PLA Methode gelang es erstmalig, auf der Membran im Zehn-Nanometer-Bereich zu untersuchen, wie Rezeptoren verteilt sind und wie sich ihre Organisation verändert. Die Fab-PLA Methode ist ein wichtiges neues Instrument für das „BIOSS nanoscale explorer progamme“ (BiNEP), einen der Forschungsschwerpunkte des Exzellenzclusters BIOSS Centre for Biological Signalling Studies der Universität Freiburg, den Reth seit 2007 leitet.

Auf die Antigenrezeptoren angewandt, zeigte die Fab-PLA Methode auf der Zellmembran von B-Zellen fluoreszierende Punkte: Dies ist der Beweis, dass die Antigenrezeptoren zunächst als Gruppen, so genannte Rezeptorcluster, auf der Membran auftreten. Sobald die B-Zellen aber ein Antigen erkannten und aktiviert wurden, verschwanden die Punkte – die Rezeptoren hatten sich voneinander entfernt. Dieses Ergebnis unterstützt das im Jahr 2010 von Michael Reth und Jianying Yang vorgeschlagene Dissoziationsmodel der B-Zell-Aktivierung.

Die Forscherinnen und Forscher zeigten auch, wie die Trennung zustande kommt: Sie veränderten B-Zellen so, dass diese das Signalmolekül Syk, das mit dem Antigenrezeptor zusammenwirkt, nicht mehr produzierten. Auf diesen Zellen waren die Rezeptorcluster auch nach der Bindung eines Antigens nachzuweisen. Syk ist damit der molekulare Schlüssel, der die Rezeptorcluster öffnet und die Abwehrreaktion des Körpers startet. Um die weiteren Details der Aktivierung der B-Zellen zu klären, bauten die Forscher Syk und die Antigenrezeptoren in Zellen von Fruchtfliegen ein. Sie veränderten Syk und erkannten so, dass erst die Bindung des Moleküls an den inneren Teil des Antigenrezeptors die Cluster auflöst.

Die Ergebnisse haben die Forscher in der Fachzeitschrift eLife veröffentlicht. In der Studie untersuchen sie auch weitere Rezeptoren auf B-Zellen, darunter das CD19- oder CD20-Molekül, auf deren Organisation im Nanobereich. „Wir haben herausgefunden, dass viele Rezeptoren auf der Membran in bestimmten Nanobereichen geordnet vorliegen“, erklärt Doktorandin und Erstautorin der Studie Kathrin Kläsener. Die Arbeiten werden auch vom Europäischen Forschungsrat (ERC) mit einem Advanced Grant über „Nanoscale analysis of protein islands on lymphocytes” unterstützt, den Reth 2012 erhielt.

Originalpublikation:
Kathrin Kläsener, Palash C Maity, Elias Hobeika, Jianying Yang, Michael Reth, B cell activation involves nanoscale receptor reorganizations and inside-out signaling by Syk, eLife 2014.

  
Kontakt:
Prof. Dr. Michael Reth
BIOSS Centre for Biological Signalling Studies
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-97374
E-Mail: michael.reth@bioss.uni-freiburg.de

Weitere Informationen:

http://elifesciences.org/content/3/e02069 - Originalpublikation
http://www.pr.uni-freiburg.de/go/zellmembran - mehr zur Forschung von Michael Reth
http://www.bioss.uni-freiburg.de/cms/reth-de.html - Profil von Michael Reth

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zusammenarbeit von Fraunhofer und Universität in Würzburg bringt Medizinforschung voran
18.12.2017 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Alexa und Co in unserem Kopf: Wo die Stimmerkennung im Gehirn sitzt
18.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Carmenes“ findet ersten Planeten

Deutsch-spanisches Forscherteam entwirft, baut und nutzt modernen Spektrografen

Seit Januar 2016 nutzt ein deutsch-spanisches Forscherteam mit Beteiligung der Universität Göttingen den modernen Spektrografen „Carmenes“ für die Suche nach...

Im Focus: Fehlerfrei ins Quantencomputer-Zeitalter

Heute verfügbare Ionenfallen-Technologien eignen sich als Basis für den Bau von großen Quantencomputern. Das zeigen Untersuchungen eines internationalen Forscherteams, deren Ergebnisse nun in der Fachzeitschrift Physical Review X veröffentlicht wurden. Die Wissenschaftler haben für Ionenfallen maßgeschneiderte Protokolle entwickelt, mit denen auftretende Fehler jederzeit entdeckt und korrigiert werden können.

Damit die heute existierenden Prototypen von Quantencomputern ihr volles Potenzial entfalten, müssen sie erstens viel größer werden, d.h. über deutlich mehr...

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Carmenes“ findet ersten Planeten

18.12.2017 | Physik Astronomie

Fehlerfrei ins Quantencomputer-Zeitalter

18.12.2017 | Physik Astronomie

Konsortium erhält 2 Millionen Euro Förderung für neue MR-kompatible elektrophysiologis

18.12.2017 | Medizintechnik