Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

»Nano«-Kleinstmengen in Umweltproben nachweisen

28.04.2016

Bislang ist unklar, wie in die Umwelt gelangte oder in Produkten eingesetzte synthetische Nanomaterialien auf Menschen, Tiere und Pflanzen wirken. Die Mengen sind so gering und die Teilchen so klein, dass es schwer ist, diese in der Umwelt nachzuweisen. Die Partner im Projekt NanoUmwelt haben jetzt eine Methode entwickelt, die in Umweltproben schon Kleinstmengen an Nanomaterialien aufspüren kann.

Winzige Zwerge halten unsere Matratzen sauber, kitten Risse in unseren Zähnen, lassen das Ei in der Pfanne nicht anbrennen und machen unsere Lebensmittel haltbarer. Die Rede ist von Nanomaterialien.


Ausschnitt einer mikroskopischen Aufnahme einer menschlichen Fettzelle: oben unbehandelt, unten mit Gold-Nanopartikeln versetzt. Die Teilchen reichern sich in den Fetttropfen der Zelle an.

Fraunhofer IBMT

»Nano« kommt aus dem Griechischen und bedeutet Zwerg. Wenige Milliardstel Meter sind die Partikel klein und in einer Vielzahl von Konsumprodukten verarbeitet. Bis heute ist jedoch weitestgehend unbekannt, wie diese Materialien auf die Umwelt wirken und in welchen Mengen und Formen sie dort vorliegen.

»Es gibt zwar zahlreiche Laborstudien, die den Effekt von Nanomaterialien auf menschliche und tierische Zellen untersucht haben. Bislang war es jedoch nicht möglich, die sehr kleinen Mengen in Umweltproben nachzuweisen«, sagt Dr. Yvonne Kohl vom Fraunhofer-Institut für Biomedizinische Technik IBMT im saarländischen Sulzbach.

1 Millionstel Milligramm pro Liter

Genau das ist das Ziel des Projekts NanoUmwelt. Als ersten großen Meilenstein hat es das interdisziplinäre Team aus Öko- und Humantoxikologen, Physikern, Chemikern sowie Biologen geschafft, eine Methode zu entwickeln, die Nanomaterialien in unterschiedlichen Umweltproben wie Flusswasser, Tiergewebe oder menschlichem Urin und Blut in einem Konzentrationsbereich von Nanogramm pro Liter (ppb – parts per billion) nachweist.

Das entspricht einem halben Zuckerwürfel im Wasservolumen von 1000 Sportschwimmbecken. Mit der neuen Methode lassen sich nicht nur wie bisher viele Nanomaterialien in klaren Flüssigkeiten, sondern auch sehr wenige Partikel in komplexen Stoffgemischen wie menschlichem Blut oder Bodenproben aufspüren.

Der Ansatz basiert auf der Feldflussfraktionierung (FFF), mit deren Hilfe es möglich ist, komplexe, heterogene Stoffgemische aus Flüssigkeiten und Partikeln in ihre Einzelteile aufzutrennen und dabei die festen Bestandteile nach ihrer Größe zu sortieren. Das gelingt durch das Zusammenwirken eines kontrollierten Flüssigkeitsstroms und eines physikalischen Trennfelds, welches senkrecht auf die fließende Suspension wirkt.

Damit der Nachweis gelingt, müssen die Umweltproben entsprechend aufbereitet sein. Das IBMT-Team aus der Abteilung Bioprozesse & Bioanalytik machte Flusswasser, menschlichen Urin und Fischgewebe fit für das FFF-Gerät. »Wir präparieren die Proben mit speziellen Enzymen. Bei diesem Prozess dürfen die Nanomaterialien allerdings nicht zerstört oder verändert werden. Nur dann können wir die realen Mengen und Formen der Nanomaterialien in der Umwelt nachweisen«, erklärt Kohl.

Die Wissenschaftler sind insbesondere Experten, wenn es darum geht, menschliche Gewebeproben bereitzuhalten, zu bearbeiten und zu lagern: Seit Januar 2012 betreibt das IBMT im Auftrag des Umweltbundesamts (UBA) die »Umweltprobenbank des Bundes (UPB) – Humanproben« . Jährlich sammelt das Forschungsinstitut an vier Orten in Deutschland Blut- und Urinproben von jeweils 120 Freiwilligen.

Die Einzelproben sind ein wertvolles Instrument, um zeitliche Trends der menschlichen Schadstoffbelastung nachzuverfolgen. »Für das Projekt NanoUmwelt wurden zusätzlich Blut und Urin gespendet, am IBMT kältegelagert und dafür genutzt, die neue Nachweismethode zu erarbeiten«, erzählt Dr. Dominik Lermen, Leiter der Arbeitsgruppe Biomonitoring & Kryobanken am IBMT. Nach Genehmigung durch das UBA könnten zum Teil auch die Humanproben des UPB-Archivs mit der neuen Methode untersucht werden.

Neue Zellkulturmodelle entwickelt

Nanomaterialien können über verschiedene Pfade, unter anderem über das Abwasser, in die Umwelt gelangen. Sie werden vermutlich über biologische Barrieren wie Lunge oder Darm von Mensch und Tier aufgenommen. Das Projektteam stellt diese Vorgänge in der Petrischale nach, um zu verstehen, wie Nanomaterialien über diese Barrieren transportiert werden.

»Das ist ein sehr komplexer Vorgang, an dem verschiedenste Zellen und Gewebeschichten beteiligt sind«, erklärt Kohl. Die Forscher stellen die Vorgänge so realistisch wie möglich nach. Dazu messen sie beispielsweise die elektrischen Flüsse innerhalb der Barrieren, um deren Funktionalität zu ermitteln oder simulieren mit künstlichen Nebelwolken die Interaktion der Lunge mit der Luft.

Das IBMT-Team konnte in der ersten Phase des Projekts NanoUmwelt verschiedene Zellkulturmodelle für den Transport von Nanomaterialien über biologische Barrieren entwickeln. Dabei arbeitet das IBMT zusammen mit dem Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie IME, das aus pluripotenten Stammzellen ein Modell zur Untersuchung der Kardiotoxizität entwickelte. Der Schweizer Projektpartner Empa realisierte ein Plazenta-Barriere-Modell zur Studie des Nanomaterialien-Transports zwischen Mutter und Kind.

Im nächsten Schritt wollen die Kooperationspartner mit der Methode Konzentrationen an Nanopartikeln in verschiedenen Umweltproben messen und die ermittelten Werte analysieren, um so das Verhalten der Nanomaterialien in der Umwelt und deren potenzielle Gefahr für Mensch, Tier und Umwelt besser abschätzen zu können. »Unser nächstes Ziel ist es, noch kleinere Partikelmengen nachzuweisen«, sagt Kohl. Die Wissenschaftler planen, mit speziellen Filtern störende Elemente aus den Umweltproben zu entfernen und neue Aufbereitungstechniken zu erarbeiten.

Weitere Informationen:

http://www.fraunhofer.de/de/presse/presseinformationen/2016/Mai/nano-kleinstmeng...

Dipl.-Phys. Annette Maurer | Fraunhofer Forschung Kompakt

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht UVB-Strahlung beeinflusst Verhalten von Stichlingen
13.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Mikroorganismen auf zwei Kontinenten studieren
13.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften