Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nah dran ist nicht nah genug

15.12.2014

Blitzschnell auf einen Warnruf reagieren, mit dem Auto einem auf die Straße laufenden Kind ausweichen – solch rasche Reaktionen sind nur möglich, weil unsere Nervenzellen in Sekundenbruchteilen miteinander kommunizieren. Einen entscheidenden Mechanismus, der eine derart schnelle Signalübertragung erst möglich macht, haben jetzt Wissenschaftler aus Braunschweig und Göttingen aufgeklärt.

Kommunikation ist nicht nur für unser Sozialleben unverzichtbar. Auch Zellen stehen pausenlos miteinander im Austausch, damit wir atmen, uns bewegen oder denken können. Einen Ball zu fangen wäre auch für Manuel Neuer undenkbar, könnten unsere Nervenzellen nicht innerhalb von Sekundenbruchteilen Informationen weiterleiten. Gewöhnlich werden diese Signale durch spezielle Botenstoffe übermittelt. Portionsweise verpackt liegen diese in kleinen Membranbläschen – den synaptischen Vesikeln – in einem Nervenende der Zelle bereit.

Zeigen Signale an, dass eine Botschaft übermittelt werden soll, verschmelzen einige synaptische Vesikel mit der Zellmembran der sendenden Zelle und setzen ihre Botenstoffe frei. Diese lösen in der empfangenden Zelle ein Signal aus. Was diesen Prozess in Gang setzt, ist seit Langem bekannt: ein Anstieg der Kalziumionen-Konzentration im Nervenende der sendenden Zelle. Wie die Vesikel dieses Signal aber im entscheidenden Schritt erkennen und verarbeiten, um daraufhin sofort die Membranen zu verschmelzen, war bislang unklar.

Verschmelzen können die Vesikel mit der Membran der sendenden Zelle nur dann, wenn sich beide nahe genug kommen. Ein Team von Wissenschaftlern um Peter J. Walla von der Technischen Universität (TU) Braunschweig und dem Göttinger Max-Planck-Institut (MPI) für biophysikalische Chemie hat nun das Protein „bei der Arbeit“ beobachtet, das für diese enge Nachbarschaft sorgt. „Dieses Protein, Synaptotagmin genannt, bringt Vesikel und Membran genau auf die richtigen Abstände zusammen. Man kann sich Synaptotagmin als eine Art molekularen Anker vorstellen“, erklärt Peter J. Walla, Professor an der TU Braunschweig und Leiter der Forschungsgruppe Biomolekulare Spektroskopie und Einzelmoleküldetektion am MPI für biophysikalische Chemie.

Mit einem Ende ist Synaptotagmin im Vesikel fest verankert. Die Forscher konnten direkt verfolgen, wie es mit seinem anderen Ende an die Membran bindet und beide auf einem Abstand von etwa acht Nanometer (acht Millionstel Millimeter) hält. Bei diesem Abstand sind die Vesikel in „Startposition“ und sind jederzeit startklar. „Die Entfernung ist noch groß genug, um zu verhindern, dass Vesikel und Membran verschmelzen und die Botenstoffe freisetzen“, so Walla. Denn die sogenannten SNARE-Proteine auf dem Vesikel und der Membran, die für das Verschmelzen sorgen, müssen sich wie ein Reißverschluss ineinander verhaken. Und bei einer Entfernung von acht Nanometern kann sich dieser Reißverschluss nicht komplett verschließen.

Steigt nun die Kalziumkonzentration, ist das der Startschuss. „Das Kalzium lagert sich an Synaptotagmin an. Daraufhin ändert das Protein seine Form und zieht Vesikel und Membran auf fünf Nanometer zusammen. Das ist nah genug, damit die SNAREs sehr schnell für ein Verschmelzen sorgen können“, so der Chemiker. „Unsere Arbeit ist der erste Beweis überhaupt, dass Synaptotagmin aufgrund des Kalziums seine Form so ändert, dass sich der Abstand zwischen Vesikel und Membran genau im richtigen Maß verringert.“

Bisher waren alle Versuche, den genauen Abstand zwischen Vesikel und Zellmembran zu vermessen, schlicht am passenden Werkzeug gescheitert. Die Wissenschaftler um Walla waren nun erfolgreich, indem sie eine raffinierte neue Technik entwickelten: Sie nutzten DNA-Stränge genau bekannter Länge als eine Art Lineal im Nano-Maßstab. Indem sie Änderungen in der Leucht-Intensität und Dauer von Fluoreszenz-Signalen beobachteten, konnten die Forscher den Abstand von Vesikel und Membran auf den Nanometer genau bestimmen. „Der Ansatz, kurze Distanzen zwischen zwei einzelnen Punkten mithilfe von Fluoreszenzfarbstoffen zu messen, ist an sich nicht neu. Aber erst mithilfe der DNA-Stränge als Nanolineale konnten wir auch Abstände zwischen kompletten Membranflächen ausreichend genau ermitteln“, erläutert Chao-Chen Lin vom MPI für biophysikalische Chemie.

Das Nanolineal für Membranabstände ist nicht nur für die Neurobiologie ein vielversprechendes Werkzeug. Peter J. Walla ist überzeugt: „Bald könnte es auch in weiteren Forschungsvorhaben zum Einsatz kommen, denn Abstände zwischen Zellmembranen spielen auch bei ganz anderen biologischen Vorgängen eine Rolle, etwa, wenn Viren an eine Wirtszelle andocken oder bei der Befruchtung einer Eizelle.“

Originalveröffentlichung
Chao-Chen Lin, Jan Seikowski, Angel Pérez-Lara, Reinhard Jahn, Claudia Höbartner, Peter Jomo Walla: Control of membrane gaps by synaptotagmin-Ca2+ measured with a novel membrane distance ruler. Nat Commun 5, 5859, doi: 10.1038/ncomms6859 (2014).

Kontakt
Prof. Dr. Peter Jomo Walla
Forschungsgruppe Biomolekulare Spektroskopie und Einzelmoleküldetektion
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Telefon:+49 551 201-1087
E-Mail:pwalla@gwdg.de

Weitere Informationen:

http://www.mpibpc.mpg.de/14795168/pr_1440 - Originalpressemitteilung des Max-Planck-Instituts für biophysikalische Chemie, Göttingen


http://www.mpibpc.mpg.de/de/walla - Webseite der Forschungsgruppe Biomolekulare Spektroskopie und Einzelmoleküldetektion, Max-Planck-Institut für biophysikalische Chemie, Göttingen


http://www.pci.tu-bs.de/agwalla/en/ – Website der Arbeitsgruppe Biophysikalische Chemie, Technische Universität Braunschweig

Dr. Carmen Rotte | Max-Planck-Institut für biophysikalische Chemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien aus dem Blut «ziehen»
07.12.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht HIV: Spur führt ins Recycling-System der Zelle
07.12.2016 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie