Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

(Nährstoff)-Not macht marine Mikroorganismen erfinderisch

24.03.2014

In der Natur ist Knappheit an lebenswichtigen Ressourcen ein Grund für Pflanzen oder Tiere sich zu spezialisieren.

Auch in der Welt der Mikroorganismen ist Anpassung ein oft genutztes (Über-)Lebensrezept. Der Chemiker Friedrich Hammerschmidt und seine Doktorandin Katharina Schiessl von der Universität Wien haben gemeinsam mit einem internationalen Wissenschaftlerteam aus Kanada einen bisher unbekannten biologischen Abbauweg von Phosphonaten in marinen Mikroorganismen erforscht. Phosphonate stellen die eiserne Phosphorreserve der Biosphäre dar. Die Ergebnisse werden nun im renommierten Fachmagazin "PNAS" publiziert.


Der Chemiker Friedrich Hammerschmidt und die Dissertantin Katharina Schiessl.

Universität Wien

Phosphor - ein lebenswichtiger Nährstoff

Phosphor ist einer der wichtigsten Nährstoffe. Jede Zelle benötigt ihn, um zu wachsen und sich zu vermehren. Daher nehmen alle Lebewesen Phosphor aus ihrer Umwelt auf und bauen ihn in unterschiedliche Zellstrukturen ein. Ein wichtiges Beispiel für ein Molekül, das nicht ohne Phosphor auskommt, ist die DNA, die unsere Erbinformation trägt.

Die meisten Organismen können Phosphor nur in Form von Phosphat nutzen. Das sind Moleküle, in denen das Phosphoratom an ein Sauerstoffatom gebunden ist, das wiederum an einem Kohlenstoffatom hängt. Diese kommen zwar praktisch überall im Boden vor, allerdings nicht immer in ausreichender Menge, weswegen man sie neben Stickstoff und Kalium Düngemitteln zusetzt.

Phosphate vs. Phosphonate

Es gibt allerdings auch Moleküle, in denen der Phosphor direkt an ein Kohlenstoffatom gebunden ist – ohne Sauerstoff als Bindeglied. Diese Verbindungen nennt man (Organo)Phosphonate. Sie können im Labor hergestellt werden und kommen als Herbizide und Medikamente zum Einsatz. Somit werden sie auch in die Umwelt freigesetzt. Es sind sehr stabile Verbindungen, die weder von Wasser, noch von Luft oder Licht zersetzt werden können.

Phosphonate können aber auch natürlichen Ursprungs sein. Es gibt einige Mikroorganismen, die Phosphonate herstellen, indem sie Phosphate aufnehmen und umbauen. Die am häufigsten in der Natur anzutreffende Verbindung ist die 2-Aminoethylphosphonsäure (2-AEP). 

Eiserne Reserven

"Phosphonate stellen die eiserne Phosphorreserve der Biosphäre dar. Bestimmte Mikroorganismen können sie im Falle eines akuten Phosphatmangels verarbeiten und setzen so den enthaltenen Phosphor wieder in Form von Phosphat in die Umwelt frei. Dies entspricht einer Art Phosphorrecycling", erklärt Friedrich Hammerschmidt vom Institut für Organische Chemie der Universität Wien.

Die oberflächennahen Meerwasserschichten der Ozeane sind eine solche phosphatarme Zone der Biosphäre. Sie enthalten aber Phosphonate, insbesondere 2-AEP. "Wir wissen, dass es diverse marine Mikroorganismen gibt, die 2-AEP abbauen und damit als Phosphorquelle nutzen können. Die für sie lebensbedrohliche Phosphornot zwang die Mikroorganismen, sich neue, alternative Phosphorquellen zu erschließen", so Hammerschmidt weiter.

Bisher waren zwei verschiedene Wege bekannt, die es Mikroorganismen ermöglichen, 2-AEP als Phosphorquelle zu nutzen. Hammerschmidt und sein Team erforschten nun zusammen mit Kooperationspartnern einen bisher unbekannten biologischen Abbauweg von 2-AEP: Im ersten Schritt dieses Abbauvorgangs bildet ein Enzym (PhY) eine Zwischenstufe, die es dem zweiten Enzym (PhZ) erlaubt, die sehr stabile Phosphor-Kohlenstoff-Bindung zu spalten und somit Phosphat freizusetzen.

"Auf diese Weise kann sich der Mikroorganismus in einer akuten Notsituation an den ansonsten unzugänglichen Phosphorreserven der Biosphäre bedienen", meint der Chemiker. Er kann sich somit einen Vorteil in besonders phosphatarmen Habitaten verschaffen.

Internationale Kooperation

Im konkreten Fall haben die Kooperationspartner in Kanada durch Mutation E. coli-Bakterien gezüchtet, die das PhZ-Enzym aus marinen Mikroorganismen produzieren. So war es ihnen möglich, das Enzym in ausreichender Menge zu gewinnen, zu reinigen und seine dreidimensionale Struktur zu bestimmen.

Um den Mechanismus aufzuklären, mit dem dieses Enzym arbeitet, hat die Dissertantin Katharina Schiessl das Zwischenprodukt des 2-AEP-Abbaus und einige strukturelle Analoga hergestellt. David Zechels Arbeitsgruppe von der Queen’s University Kingston (Kanada) untersuchte mit Hilfe dieser Verbindungen die Spaltung der Phosphor-Kohlenstoff-Bindung durch das PhZ-Enzym.

Die Arbeitsgruppe von Friedrich Hammerschmidt am Institut für Organische Chemie der Universität Wien beschäftigt sich schon lange mit der Biosynthese und dem Bioabbau von natürlich vorkommenden Phosphonsäuren. Da jährlich viele Tonnen an Phosphonaten in die Umwelt gelangen, ist deren Verbleib in der Biosphäre und damit ein besseres Verständnis des globalen Phosphorkreislaufs von enormem Interesse für die Forschung.

Publikation in "PNAS":

Laura M. van Staalduinen, Fern R. McSorley, Katharina Schiessl, Jacqueline Séguin, Peter B. Wyatt, Friedrich Hammerschmidt, David L. Zechel, and Zongchao Jia: "Crystal structure of PhnZ in complex with substrate reveals a new di-iron oxygenase mechanism for catabolism of organophosphonates". In PNAS 2014.
DOI10.1073/pnas.1320039111

Wissenschaftlicher Kontakt
Ao. Univ.-Prof. Dr. Friedrich Hammerschmidt
Institut für Organische Chemie
Universität Wien
1090 Wien, Währingerstraße 38
T +43-1-4277-521 05
friedrich.hammerschmidt@univie.ac.at

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Alexandra Frey | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics