Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nährstoff oder Gift: RUB-Biologen entschlüsseln, wie Pflanzen die Mineralienaufnahme steuern

03.04.2012
Nährstoff und Gift zugleich – auf die Dosis kommt es an
Wie Pflanzen die perfekte Menge Mineralien aufnehmen
RUB-Biologen entschlüsseln Funktion des Metallbindemoleküls Nicotianamin

Um zu überleben dürfen Pflanzen weder zu viel noch zu wenig Mineralien aus dem Boden aufnehmen. Neue Erkenntnisse, wie sie dieses kritische Gleichgewicht regulieren, veröffentlichten Biologinnen und Biologen der Ruhr-Universität in einer Serie von drei Publikationen in der Zeitschrift The Plant Cell.

Die Forscher entdeckten spezielle Funktionen des Metallbindemoleküls Nicotianamin. „Die Ergebnisse sind wichtig für die nachhaltige Landwirtschaft und auch für den Menschen – um gesundheitliche Probleme zu verhindern, die durch einen Mangel an lebenswichtigen Nährstoffen in der Nahrung verursacht werden“, sagt Prof. Dr. Ute Krämer vom RUB-Lehrstuhl für Pflanzenphysiologie.

Pflanzen: Am Anfang der Nahrungskette

Alle Organismen benötigen Eisen, Zink und Kupfer als Nährstoffe. Sie sind in der Zelle an lebenswichtigen katalytischen Funktionen beteiligt. Da Pflanzen am Beginn der Nahrungskette stehen, ist ein ausreichender Gehalt dieser Mineralien in ihnen für die menschliche Ernährung entscheidend. Die Metalle sind sich chemisch sehr ähnlich, so dass es für Organismen schwierig ist, zwischen ihnen zu unterscheiden.

Wie die Zelle die Konkurrenten Zink und Eisen auseinanderhält

Das metallbindende Molekül Nicotianamin ist wichtig für den Eisentransport in Pflanzen. In ihrer Zeit an den Universitäten in Heidelberg und Bochum zeigte Krämer, dass es auch den Zinkhauhalt steuert. „Zu viel Zink kann eisenabhängige Prozesse vergiften und umgekehrt“, erklärt die Biologin. Wie viel Zink in der Zellflüssigkeit verfügbar ist, hängt davon ab, wo in der Zelle sich das Nicotianamin aufhält. Bei hohen Zinkkonzentrationen verlagert das Transportprotein ZIF1 das metallbindende Molekül von der Zellflüssigkeit in die Vakuole – einen abgetrennten Bereich der Zelle, der unter anderem Stoffe speichert. Dadurch werden auch die Zinkionen in die Vakuole befördert und so aus den Transportwegen der Pflanze entfernt. Nun macht Zink dem Eisen weniger Konkurrenz, so dass Eisen besser in der Zelle verfügbar ist.

Von der Wurzel in die Blätter: Nicotianamin entscheidend für den Zinktransport

Genetisch bedingt enthalten Pflanzen je nach Lebensraum ganz unterschiedliche Mengen an Mineralien. Die in Deutschland heimische Arabidopsis halleri sammelt in ihren Blättern zum Beispiel 100 mal mehr Zink an als viele andere Pflanzen. In Kooperation mit Kollegen der Universität Bayreuth zeigte Krämers Team warum: Arabidopsis stellt große Mengen Nicotianamin her. Schalteten die Forscher die Synthese dieses Moleküls über genetische Manipulation ab, transportierten die Pflanzen auch weniger Zink von der Wurzel in die Blätter. Nicotianamin ist also entscheidend für die hohe Zinkkonzentration. „In Entwicklungsländern ist Zinkmangel einer der größten ernährungsbedingten Risikofaktoren für Gesundheitsprobleme“, erklärt Krämer. „Unsere Daten geben wichtige Hinweise, wie man Erntepflanzen mit erhöhten Zinkgehalt züchten kann.“

Wie Kupfer in die Pflanzenzelle gelangt

Gemeinsam mit amerikanischen Kollegen erforschten die Bochumer Biologen auch, wie pflanzliche Zellen Kupfer aufnehmen. Sie setzten dazu das so genannte „next-generation sequencing“ ein. Mit dieser Methode werden gleichzeitig alle Boten-RNAs einer Zelle entschlüsselt. Dadurch erhält man ein vollständiges Bild davon, welche Proteine die Zelle in welcher Menge herstellen soll. Aus diesen Daten identifizierte Krämers Team wesentliche neue, an der Kupferaufnahme beteiligte Moleküle. Die Wissenschaftler wiesen nach, dass die Kupferionen zunächst von der zweifach positiv in die einfach positiv geladene Form überführt werden, was für die Aufnahme in die Pflanze essenziell ist. Verantwortlich dafür sind zwei spezifische Enzyme, Kupferreduktasen genannt. „Unabhängig davon haben wir auch herausgefunden, dass Kupfermangel in Pflanzen einen sekundären Eisenmangel auslöst, ähnlich wie beim Menschen.“

Titelaufnahmen

M.J. Haydon, M. Kawachi, M. Wirtz, S. Hillmer, R. Hell, U. Krämer (2012): Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis, The Plant Cell, doi: 10.1105/tpc.111.095042

U. Deinlein, M. Weber, H. Schmidt, S. Rensch, A. Trampczynska, T.H. Hansen, S. Husted, J.K. Schjoerring, I.N. Talke, U. Krämer, S. Clemens (2012): Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation, The Plant Cell, doi: 10.1105/tpc.111.095000

M. Bernal, D. Casero, V. Singh, G.T. Wilson, A. Grande, H. Yang, S.C. Dodani, M. Pellegrini, P. Huijser, E.L. Connolly, S.S. Merchant, U. Krämer (2012): Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis, The Plant Cell, doi: 10.1105/tpc.111.090431

Weitere Informationen

Prof. Dr. Ute Krämer, Lehrstuhl für Pflanzenphysiologie, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel.: 0234/32-28004
ute.kraemer@rub.de


LS Pflanzenphysiologie
http://www.ruhr-uni-bochum.de/pflaphy/Seiten_dt/index_d.html

Redaktion
Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/pflaphy/Seiten_dt/index_d.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Agent 007: Organische Moleküle als Geheimnisträger
20.04.2018 | Karlsruher Institut für Technologie

nachricht Krebs erfolgreich mit Fieber behandeln
20.04.2018 | Technische Hochschule Mittelhessen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics