Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nachhaltiger Biokunststoff für die Biomedizin

03.03.2016

Aus einem Biomasse-Grundstoff lässt sich ein vollkommen recyclingfähiger und metallfreier Polyester herstellen

Kunststoffe und Polymermaterialien sind im Allgemeinen wenig nachhaltig, denn sie sind zumeist erdölbasiert, für ihre Herstellung werden Metallkatalysatoren benötigt, sie sind in der Umwelt schwer abbaubar und lassen sich oft schwer recyclen.


Recyclingfähiger Polyester aus Biomasse-Grundstoff

(c) Wiley-VCH

Jetzt haben amerikanische Wissenschaftler aus einem Biomassegrundstoff einen vollständig recyclingfähigen Biopolyester hergestellt. Wie sie in der Zeitschrift Angewandte Chemie berichten, benötigt ihr Verfahren keinen Metallkatalysator, das Material eignet sich für die typischen Polyesteranwendungen, und durch einfaches Erhitzen auf hohe Temperaturen lässt sich das Monomer unversehrt zurückgewinnen.

Nachhaltig und recyclingfähig, das sind die Eigenschaften, die man sich für Kunststoffe der nächsten Generation wünscht. Zudem sucht man nach atomökonomischen Herstellungsverfahren, bei denen so wenig Abfall wie möglich entsteht.

Ein Kandidat für neue recyclingfähige Biokunststoffe ist die chemische Verbindung Gamma-Butyrolacton (GBL), die direkt aus dem Biomasserohstoff Bernsteinsäure gewonnen werden kann und bereits ein bekanntes Biolösungsmittel ist. Allerdings benötigten die Polymerisationsverfahren zu Poly-Gamma-Butyrolacton oder PGBL extrem harsche Bedingungen und Metallkatalysatoren.

Eugene Y.-X. Chen und seine Postdoktorandin Miao Hong an der Colorado State University haben jetzt einen rein organokatalytischen Ansatz gewählt: "Für biomedizinische Anwendungen sollte PGBL durch metallfreie Organopolymerisation aus GBL hergestellt werden", beschreibt Chen ihre Motivation.

Die beiden Forscher mussten hierfür eine Reaktion in Gang bringen, die eigentlich von alleine nicht ablaufen kann, weil GBL ein äußerst stabiles Molekül ist. Um GBL für die Reaktion gewissermaßen "anzuschubsen", gleichzeitig aber eine Metallkatalyse zu vermeiden, griffen Chen und Hong auf eine extrem starke organische Base zurück.

Mit Erfolg: Schon bei −40 °C und normalem Luftdruck lief die sogenannte Ringöffnungspolymerisation glatt ab. "Dieses System ermöglichte einen Monomer-Umsatz zum Polymer von 90%. "Wir erhielten ein hochmolekulares Polymer in der relativ kurzen Zeit von maximal vier Stunden", schreiben die Autoren. Das entstandene Kunststoffpulver habe die typischen Polyestereigenschaften und ließe sich in verschiedene Formen umschmelzen, betonen sie.

Vor allem aber sei es vollständig recyclingfähig. "Aus dem mit unserer Organopolymerisation gewonnenen PGBL lässt sich durch Erhitzen das reine Monomer vollständig wiedergewinnen", bemerken die Autoren. Und da keine Metallkatalyse für die Polymerisation eingesetzt wurde, eignet sich ihr Biopolyesterverfahren insbesondere für Anwendungen, die absolut metallfreie Produkte oder Prozesse einfordern. Wichtige Bereiche sind die Biomedizin und die Mikroelektronik.

Angewandte Chemie: Presseinfo 05/2016

Autor: Eugene Y.-X. Chen, Colorado State University (USA), https://www.chem.colostate.edu/people/eychen/

Permalink to the original article: http://dx.doi.org/10.1002/ange.201601092

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Weitere Informationen:

http://presse.angewandte.de

Dr. Renate Hoer | Gesellschaft Deutscher Chemiker e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscherteam der Universität Bremen untersucht Korallenbleiche
24.04.2017 | Universität Bremen

nachricht Feinste organische Partikel in der Atmosphäre sind häufiger glasartig als flüssige Öltröpfchen
21.04.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung