Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nachhaltig wirtschaften in der Zelle – Recycling nach evolutionärem Erfolgsrezept

23.02.2012
Zum Alt-Eisen gehören ausgediente Ribosomen nicht. Nach vollbrachter Arbeit, also der Synthese eines Proteins, werden diese großen Molekülkomplexe aber auch recycelt: Ihre beiden Untereinheiten werden dabei getrennt und kommen erst wieder zusammen, wenn eine neue Syntheserunde ansteht.

Ein Team um den Biochemiker Professor Roland Beckmann vom Genzentrum der LMU hat nun das ribosomale Recycling genauer untersucht, um ein evolutionäres Erfolgsrezept zu entschlüsseln.

Verantwortlich für das Recycling ist in höheren Organismen wie auch in den sogenannten„Urbakterien“, den Archaea, dasselbe Enzym. Diese ATPase ABCE1 konnten die Forscher erstmals am Ribosom visualisieren und so ein Modell entwickeln, das erklärt, wie das Ende der Proteinsynthese, das Recycling der Ribosomen und letztlich auch eine erneute Syntheserunde gekoppelt sein könnten – dank einem über Milliarden Jahre konservierten Mechanismus. Die Studie wurde im Rahmen des Exzellenzclusters CiPSM durchgeführt. (Nature online, 23. Februar 2012)

Gene gelten vielfach als zelluläre Superstars, kodieren sie doch den Bauplan für die Proteine, die wichtigsten Funktionsträger eines jeden Organismus. Die molekulare „Drecksarbeit“ der Translation, also die Synthese der Proteine aus einzelnen Bausteinen anhand der genetischen Information, übernehmen aber die Ribosomen – die damit in der Zelle eine unverzichtbare Funktion übernehmen. Die Translation besteht aus vier Phasen, von der Initiation über die Elongation zur Termination mit abschließendem Recycling, wenn die Untereinheiten der Ribosomen disassoziiert werden, um erst für die nächste Syntheserunde wieder zusammenzukommen.

In Bakterien ist das Recycling bereits gut untersucht und weitgehend verstanden. Anders aber in den höheren Organismen, den Eukaryonten, und den Archaea. Diese „Urbakterien“ bilden mit einer Reihe hitze- oder salztoleranter Arten in extremen Lebensräumen in der Systematik der zellulären Lebewesen eine eigenständige Domäne, die sich von anderen Bakterien unter anderem in der Struktur der Ribosomen unterscheidet. Den Archaea ist mit den Eukaryonten gemein, dass die ATPase ABCE1 das Recycling der ribosomalen Untereinheiten steuert. Das Enzym in den Urbakterien ist dem der höheren Zellen sehr ähnlich.

„Dieser extreme Grad an struktureller und evolutionärer Konservierung über Milliarden Jahre ist sehr ungewöhnlich“, sagt Beckmann. Die Forscher konnten eine ungewöhnliche Eisen-Schwefel-Cluster-Domäne in dem Enzym erstmals am Ribosom visualisieren. „Wir vermuten, dass diese stabile Domäne eine Art molekularen Keil, einen sogenannten A-site-Faktor, zwischen die ribosomalen Untereinheiten treibt“, sagt Erstautor Thomas Becker. „Zudem könnte unser Modell erklären, wie die Termination, das Recycling und letztlich auch eine erneute Initiation gekoppelt sein könnten.“ (suwe)

Publikation:
Structural basis of highly conserved ribosome recycling in eukaryotes and archaea
Thomas Becker et.al.
Nature online, 23. Februar 2012
Doi: 10.1038/nature10829
Ansprechpartner:
Genzentrum und Department für Biochemie der LMU
Exzellenzcluster “Center for Integrated Protein Science Munich” (CIPSM)
Tel.: 089/2180 – 76900
E-Mail: beckmann@lmb.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmb.uni-muenchen.de/beckmann/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunabwehr ohne Kollateralschaden
23.01.2017 | Universität Basel

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie