Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nach getaner Arbeit abschalten: Ein Inhibitor erhöht die Spezifität der Genschere CRISPR/Cas9

14.08.2017

Die Genschere CRISPR/Cas9 ermöglicht präzise Veränderungen am Erbgut. Allerdings erlaubt sich die Genschere auch Fehler und schneidet an unerwünschten Stellen. Jetzt haben Wissenschaftler gezeigt, dass ein virales Protein die Genauigkeit der Genschere steigert, indem es off-target-Effekte verhindert.

Keine andere Entdeckung hat die Molekularbiologie in den letzten Jahren so fundamental verändert wie die Genschere CRISPR/Cas9. Das Werkzeug, mit dem sich Bakterien gegen Viren verteidigen, wird inzwischen in Labors auf der ganzen Welt dazu genutzt, pflanzliches oder tierisches Erbgut gezielt zu verändern.


Cas9 (grau) und hat ein spezifisches DNA-Stück (lila) erreicht, an das es andockt, bevor es zur Tat schreitet. Zu diesem DNA-Stück wird es durch die Guide-RNA (orange) geleitet. (Bildquelle: © Fuguo Jiang, UC Berkeley)


Das Anti-CRISPR-Protein (rot auf der rechten Seite) imitiert die DNA, wo das schneidende Enzym Cas9 typischerweise andockt ("Ziel-DNA"; links) bevor es schneidet. Aber das Anti-CRISPR-Protein lässt nicht los, was Cas9 davon abhält weiter aktiv zu sein.

Bildquelle: © Fuguo Jiang, UC Berkeley

Problematisch ist bisher jedoch die Tatsache, dass CRISPR/Cas9 nicht ganz so präzise arbeitet, wie die Wissenschaftler es sich wünschen. Sogenannte off-target-Effekte, also unerwünschte Punktmutationen im Erbgut, schmälern die Erfolge. Die Forscher vermuteten, dass diese off-target-Effekte erst mit zeitlicher Verzögerung auftreten. Falls es gelingen sollte, CRISPR/Cas9 nach getaner Arbeit vollkommen auszuschalten, könnten sich Fehler vermeiden lassen.

Inhibitor-Proteine verfeinern Wirkung von CRISPR/Cas9

Jetzt haben Wissenschaftler einen neuen Ansatz entdeckt, mit dem sich solche Fehler wohl tatsächlich effektiv verhindert lassen. Im Mittelpunkt stehen dabei Inhibitoren, auch anti-CRISPR-Proteine genannt. Sie wurden erst Ende 2016 entdeckt. Sie stammen aus Bakteriophagen und dienen als Verteidigung gegen die bakterielle CRISPR-Maschine.

Aufnahmen im Kryo-Elektronenmikroskop zeigen: Diese Inhibitoren interagieren mit dem Cas9-sgRNA-Komplex und besetzen genau die Bindestelle, die eigentlich für die DNA reserviert ist.

Dadurch kann Cas9 DNA weder binden, noch schneiden. Durch das richtige Timing gelingt es, dass die Genschere die gewünschten Veränderungen vornimmt, während off-target-Effekte unterbunden werden.

Richtiges Timing ist wichtig

In ihrem Experiment untersuchte das Forscherteam die Wirkung des Inhibitor-Proteins AcrIIA4 am Beispiel menschlicher Blutzellen. Es stammt aus Viren, die Bakterien der Gattung Listerien infizieren, sogenannten Listerien-Bakteriophagen. Zwei Genscheren kamen zum Einsatz. Eine war auf das Schneiden des Gens HBB programmiert, das bei Sichelzellanämie eine Rolle spielt, die andere auf das Zerstückeln von VEGFA, einem endothelialen Wachstumsfaktor.

Gaben sie zuerst AcrIIA4 zu den Zellen und dann CRISPR/Cas9, so wurde die Wirkung der Genschere komplett blockiert. Wurden beide Komponenten gleichzeitig in die Zellen injiziert, war die Genschere auch nicht mehr aktiv. Doch als sie zuerst CRISPR/Cas9 und sechs Stunden später AcrIIA4 hinzugaben, führte CRISPR die erwünschten Veränderungen an der DNA aus. Die Nebenwirkungen jedoch wurden unterbunden.

Off-target-Effekte langsamer?

Ein möglicher Erklärungsansatz ist, dass CRISPR/Cas9 am schnellsten die Schnitte ausführt, auf die es programmiert wurde. Erst später „schnippelt“ es auch an anderen Stellen im Genom mit etwas abweichender Basensequenz herum. Es könnte jedoch auch sein, dass die off-target-Effekte einfach langsamer ablaufen.

Doch ganz gleich, welcher Erklärungsansatz stimmt. Mit Inhibitor-Proteinen lässt sich das Problem der off-target-Effekte beheben.

Die Experimente fanden unter Federführung von Jennifer Doudna statt, einer der CRISPR-Entdeckerinnen. Doudna beschäftigt sich vor allem mit der Anwendung der Methode in tierischen Zellen. Doch auch Pflanzenforscher und -züchter sind an effizienteren Genscheren interessiert. Schließlich eröffnet CRISPR auch ihnen bisher ungeahnte Möglichkeiten.

CRISPR kann Ernteverluste bei Raps verringern

Erst kürzlich ist es Pflanzenforschern aus Kiel gelungen, Gene des tetraploiden Raps (Brassica napus) mit Hilfe von CRISPR/Cas9 gezielt zu verbessern. Zurzeit müssen Landwirte Ernteverluste von bis zu 25 Prozent hinnehmen, weil die Rapsschoten platzen und ihre Samen vor der Ernte freilassen. Ziel der Kieler Wissenschaftler waren daher Pflanzen mit platzfesten Schoten. Dazu führten sie mit CRISPR/Cas9  Mutationen in zwei nahezu identische Gene ein.

Als nächstes wollen die Forscher die sekundären Pflanzenstoffe ins Visier nehmen. CRISPR/Cas soll dabei helfen, ernährungsphysiologisch ungünstige Inhaltsstoffe wie Glucosinolate oder Phytinsäure aus den Samen zu eliminieren und damit die Qualität der Rapsprodukte zu verbessern.

Redaktion Pflanzenforschung.de | Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/index.php?cID=12153

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht CHP1-Mutation verursacht zerebelläre Ataxie
23.01.2018 | Uniklinik Köln

nachricht Lebensrettende Mikrobläschen
23.01.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks Industrie & Wirtschaft
Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics