Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mutationen auf einfache Weise finden

15.03.2013
Algorithmus vergleicht Genome und findet schwerwiegende Veränderungen

Die Suche nach der Mutation hinter einem neuen Merkmal war jahrzehntelag gleichbedeutend mit der Suche nach einer Stecknadel im Heuhaufen. Korbinian Schneeberger, George Coupland und ihre Kollegen vom Max-Planck-Institut für Pflanzenzüchtungsforschung in Köln haben einen Algorithmus entwickelt mit dem sich nahe verwandte Genome vergleichen lassen, egal von welcher Spezies. Der Algorithmus findet Sequenzen, in denen sich die Genome unterscheiden. Dazu gehört auch die Mutation, die der Pflanze ein neues Erscheinungsbild gibt

Genkartierung, Koppelungsanalyse, Sequenzvergleiche - diese drei Begriffe stehen für die langwierige und schwierige Suche nach der genetischen Veränderung hinter einem interessanten Phänotyp. Lange Zeit konnten sich die Wissenschaftler einer relevanten Mutation nur im Trippelschritt nähern. Erleichtert wurde die Suche nach ursächlichen Mutationen durch das Sequenzieren kompletter Genome. Für deren Rekonstruktion braucht man allerdings die komplette Sequenz eines repräsentativen Individuums, die sogenannte Referenzsequenz. Weil es nicht für jede Pflanze eine passende Referenzsequenz gibt, ist die Suche nach relevanten Mutationen auch heute noch schwierig.

Korbinian Schneeberger, George Coupland und ihre Kollegen haben nun eine Methode entwickelt, die ohne Referenzsequenzen auskommt. Sie beruht auf der einfachen Überlegung, dass sich die DNA der Ausgangspflanze und der Mutante in der relevanten Veränderung unterscheiden und setzt deshalb auf den direkten Vergleich dieser nahe verwandten Genome. Werden alle identischen Sequenzen durch einen Algorithmus ausgeblendet, sollte am Ende nur das übrig bleiben, was beide Genome unterscheidet.

Analysiert wird mit sogenannten „k-mers“. Dieser Kunstbegriff bezeichnet Fragmente, die etwa dreißig Basenpaare lang sind und darum sehr einfach und effizient gezählt und gruppiert werden können. Dabei werden alle gleichen k-mers, - also alle gleichen DNA-Sequenzen - in einen Stapel gepackt. Weil Fragmente mit der relevanten Mutation eine andere Sequenz haben als die Ausgangssequenz wird für ihre Sequenzinformation ein neuer k-mer Stapel eröffnet. Am Ende schaut man mit dem neuen Algorithmus, welche neuen Stapel bei dem Abgleich entstanden sind und zu welchen Genen sie gehören.

Wie verhindern Schneeberger und seine Kollegen nun, dass sie sich beim Genom-Vergleich nicht nur mit irrelevanten Veränderungen oder Sequenzfehlern beschäftigen? „Für den Ausschluss dieser Störquellen gibt es verschiedene Strategien, die zum Teil schon bei der Konzeption des Vergleichs ansetzen“, sagt Schneeberger. “Wir müssen nichtkausale Veränderungen frühzeitig aussortieren.“ Beim Sequenzieren der Genome wird die genetische Information mehrfach gelesen. Sequenzierfehler treten dabei nur hin und wieder und nicht immer an der gleichen Stelle auf. Sie sind daher selten. Solche seltenen Sequenzveränderungen können aus den k-mer Stapeln heraus gerechnet werden.

Schwieriger ist die Ausgrenzung irrelevanter Mutationen. Für diese Aufgabe ist die Wahl des Ausgangsmaterials wichtig. Entweder werden zwei Mutanten miteinander verglichen, bei denen nachweislich dasselbe Gen mutiert ist oder es wird die Ausgangspflanze mit Mutanten-Pools verglichen. Mutanten-Pools gehen aus der Kreuzung von Ausgangspflanze und Mutante hervor und repräsentieren die F2-Generation. Jede Pflanze in diesen Pools hat exakt die gleiche Mutation für den neuen Phänotyp. Die ursächliche Mutation ist also gegenüber nicht relevanten Mutationen in der Überzahl. Damit sind die nicht relevanten Mutationen selten und können wieder aus den k-mer Stapeln heraus gerechnet werden. „Wir haben der neuen Methode den Namen NIKS gegeben“, sagt Karl Nordström, der den Algorithmus programmiert hat. „NIKS für „needle in the k-stack“. Der Name ist eine Reminiszenz an die Nadel im Heuhaufen“.

Vergleicht man Genome von Ausgangspflanzen mit den Genomen aus Kreuzungspools, findet man die relevante Mutation in einem k-mer Stapel, der bei den Ausgangspflanzen fehlt, im Kreuzungspool aber vorhanden ist. Vergleicht man zwei Pflanzen mit verschiedenen Mutationen in ein- und demselben Gen, schaut man welcher neue k-mer Stapel in beiden Pflanzen zum selben Gen gehört. „Unsere Methode ist so robust, dass wir erstaunlich wenig falsch positive Ergebnisse zu Tage fördern“, kommentiert Schneeberger das Potential von NIKS. „Der Prozentsatz an korrekt identifizierten Mutationen liegt bei über 98 Prozent. Und das ohne Unterstützung durch eine Referenzsequenz.“

Der Bioinformatiker und sein Team haben die neue Methode auf verschiedene Weise getestet. Zuerst wurden schon bekannte Mutationen aus Reis bestätigt. Danach haben Schneeberger und Coupland nach unbekannten Mutationen in der Alpengänsekresse Arabis alpina gesucht. Eine Besonderheit dieser Pflanze ist, dass sie normalerweise nur dann blüht, wenn sie der Kälte des Winters ausgesetzt war. Maria Albani und George Coupland haben eine Mutante isoliert, die nicht mehr auf den Kältereiz angewiesen ist. „Wir haben mit NIKS die kausale Mutation unter mehr als 350 Millionen Basen gefunden. Das zeigt, dass wir neue und relevanten Mutationen ohne Rückgriff auf eine Referenzsequenz finden können“, sagt Schneeberger. „Der größte Wert von NIKS wird darin liegen, in einem unbekannten Genom schneller zur relevanten Mutation vorzustoßen.“ Die Kölner Wissenschaftler sehen darin sogar ein neues Arbeitsgebiet, denn viele interessante Phänotypen, - etwa die Resistenz gegenüber Schädlingen - kommen nur in wenig untersuchten Arten vor für die es keine Referenzensequenzen gibt.

Ansprechpartner:
Dr. Korbinian Schneeberger
Max-Planck-Institut für Pflanzenzüchtungsforschung
Carl von Linné Weg 10
50829 Köln
Tel: +49-221-5062-265
schneeberger@mpipz.mpg.de

Originalveröffentlichung:
Karl JV Nordström, Maria C Albani, Geo Velikkakam James, Caroline Gutjahr, Benjamin Hartwig, Franziska Turck, Uta Paszkowski, George Coupland and Kobinian Schneeberger
Mutation identification by direct comparison of whole-genome sequencing data from mutant and wild-type individuals using k-mers

Nature Biotechnology, 2013: doi:10.1038/nbt.2515

Dr Harald Rösch | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpipz.mpg.de

Weitere Berichte zu: Algorithmus Ausgangspflanze Genom Mutant Mutation Pflanze Sequenzieren

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie