Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mustergültiger Pendelverkehr - Zellen bei der Selbstvermessung

08.06.2012
Teilt sich eine Zelle, verdoppelt sie ihre Bestandteile und schnürt sich dann in der Mitte ein. Ein neues Modell erklärt, wie Bakterien mit Hilfe selbst organisierender Proteine ihre eigene Form "spüren" und damit ihre eigene Mitte finden.

Bestimmte Eiweiße in Bakterien, sogenannte Min-Proteine, verhindern die Zusammenschnürung der Zellwand. Sie pendeln in der Zelle hin und her und verteilen sich so, dass nur in der Zellmitte eine Teilung möglich ist.

Der LMU-Physiker Professor Erwin Frey und sein Mitarbeiter Jacob Halatek präsentieren nun ein Modell, das zeigt, welche Mechanismen die Proteinverteilung festlegen. Damit lassen sich die Mechanismen dieser „Mittenfindung“ weiter entschlüsseln.

Die abwechselnde Bindung an die und Ablösung von der Zellmembran lässt die Proteine pendeln. Das Protein MinD bindet dabei an die Zellmembran und „fängt“ weiteres MinD sowie MinE ein. Hat sich zu viel MinE angesammelt, lösen sich beide Proteine und MinD diffundiert an einen Ort mit geringerer MinE-Konzentration. "Die Geometrie der Zelle bestimmt dabei die Muster der bevorzugten Aufenthaltsorte der Proteine", sagt Frey. "In stabförmigen Zellen bilden sich Streifenmuster, in runden Zellen dagegen im Kreis laufende Wellen."

Muster-gültige Geometrie

Das neue Modell reproduziert erstmals die experimentell beobachteten Muster auch für verschiedene Bedingungen, beispielsweise unterschiedliche Umgebungstemperaturen. Es zeigt, dass alleine die Zellgeometrie – und nicht etwa der Konzentrationsunterschied oder die Stärke der Membranbindung – bestimmt, welche Art von Muster sich bildet. Die Wissenschaftler, die hier nun den Mechanismus bestimmt haben, der die Auffindung der Zellmitte optimiert, sprechen von einem kanalisierten Teilchentransfer.
Erstmals ist es damit möglich, diesen Prozess systematisch für verschiedene Parameter der Diffusion und der Membranbindung zu untersuchen. Zudem können nun die räumlichen und zeitlichen Muster der Proteinverteilung für unterschiedliche Zellgeometrien schnell vorhergesagt werden. Dies könnte Anwendungen in artifiziellen Membransystemen und synthetischen Zellmodulen ermöglichen. Die Arbeit wurde im Rahmen des Exzellenzclusters „Nanosystems Initiative Munich“ gefördert. (cr/suwe)

Publikation:
„A highly canalized MinD transfer and MinE sequestration explain the origin of robust MinCDE-protein dynamics“; Jacob Halatek und Erwin Frey; Cell 07. Juni 2012
Ansprechpartner:
Prof. Dr. Erwin Frey
Institut für statistische und biologische Physik
E-Mail: frey@lmu.de
Web:http://www.theorie.physik.uni-muenchen.de/lsfrey/group_frey/index.html

Luise Dirscherl | idw
Weitere Informationen:
http://www.theorie.physik.uni-muenchen.de/lsfrey/group_frey/index.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue CRISPR-Methode enthüllt Genregulation einzelner Zellen
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Neues Unterwasser-Observatorium bei Boknis Eck
19.01.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer-Institute entwickeln zerstörungsfreie Qualitätsprüfung für Hybridgussbauteile

19.01.2017 | Verfahrenstechnologie

Kieler Forscher koordiniert millionenschweres Verbundprojekt in der Entzündungsforschung

19.01.2017 | Förderungen Preise

Neue CRISPR-Methode enthüllt Genregulation einzelner Zellen

19.01.2017 | Biowissenschaften Chemie