Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Muskelbildung – auf die richtigen Verbindungen kommt es an

23.12.2014

Unser Körper besitzt verschiedene Arten von Muskeln. Während der Herzmuskel Blut durch die Gefäße pumpt, können wir mit Hilfe der Skelettmuskeln Gewichte stemmen oder einen Marathon laufen.

Durch einen speziell angepassten Bauplan sind die einzelnen Muskeln optimal für ihre jeweilige Funktion gerüstet. Diese Anpassungen kommen durch verschiedene Varianten der Protein-Bausteine zustande, die die kontraktilen Muskelmaschinen bilden: die Sarkomere.


Die Zellkerne (rot) der Flugmuskeln von Drosophila benötigen den Splicing Regulator Arrest, um die richtigen Bausteine für die kontraktilen Strukturen (die Sarkomere, grün) bilden zu können.

Bild: Frank Schnorrer / Copyright: MPI für Biochemie

Forscher am Max-Planck-Institut für Biochemie haben nun anhand von Flugmuskeln der Taufliege Drosophila ein wichtiges Prinzip entdeckt, das erklärt, wie die unterschiedlichen Proteinvarianten in den entsprechenden Muskeln produziert werden.

Jeder Muskel besteht aus Hunderten von kontraktilen Minimaschinen, den sogenannten Sarkomeren. Je nach Art und Eigenschaft des Muskels unterscheiden sich diese Maschinen in ihrem molekularen Aufbau. Diese verschiedenen Varianten der Sarkomere wirken sich auf die Kontraktionsgeschwindigkeit oder die Kraft der Muskeln aus.

Die Flugmuskeln der Taufliege Drosophila etwa müssen extrem schnell kontrahieren (200 Mal pro Sekunde), um ihnen das Fliegen zu ermöglichen. Wissenschaftler um Frank Schnorrer haben dieses Fliegenmodell untersucht, um zu klären, wie die unterschiedlichen Kompositionen der Sarkomere zustande kommen.

„Wir konnten zunächst zeigen, dass in der schnellen Flugmuskulatur mehr als 700 Proteine in einer anderen Variante vorlagen als in der langsamen Beinmuskulatur“, berichtet Maria Spletter, die Erstautorin der Studie. „Die verschiedenen Proteinvarianten bilden also Sarkomere mit unterschiedlichen mechanischen Eigenschaften.“ Was den Wissenschaftlern besonders auffiel: oft gingen die unterschiedlichen Proteinvarianten auf das gleiche Gen zurück.

Die Gene beinhalten die Baupläne für Proteine. Vereinfacht gesagt, wurde also der Bauplan für das spätere Protein unterschiedlich interpretiert. Dies geschah durch einen Mechanismus, den Forscher als „alternatives Splicing“ bezeichnen: Gene bestehen aus mehreren kleinen Einheiten, den Exons, die von der Zelle abgeschrieben, zusammengeklebt und dann in ein Protein übersetzt werden. Alternatives Splicing bezeichnet das unterschiedliche Zusammenkleben von mehreren Exons und führt so zu verschiedenen Proteinvariationen des gleichen Gens.

Bis zum Zerreißen gespannt

Doch woher weiß der Flugmuskel, welche Varianten der Proteine er nun benötigt? In weiteren Untersuchungen identifizierten die Wissenschaftler ein Protein mit dem Namen „Arrest“, was die richtigen Exons erkennt und aneinanderklebt. „Wenn die Funktion von Arrest gestört ist“, so Spletter, „werden im Flugmuskel die falschen Exon-Kombinationen zusammengeführt und so Proteinvarianten gebildet, die sonst nur in Beinmuskeln vorkommen.“ Die Folgen sind dramatisch: die Fliegen können nicht mehr fliegen und schlimmer noch, ihre Flugmuskeln werden durch eine zu starke Kontraktion sogar in Stücke gerissen.

Und auch für uns Menschen könnten diese Ergebnisse von Bedeutung sein. „Arrest-verwandte Proteine kommen auch in den Muskeln von Säugetieren vor, daher könnte dieser Mechanismus auch beim Menschen eine Rolle spielen“ schlägt Schnorrer die Brücke. Die Entdeckung des neuen Mechanismus‘ wirft also weitere Fragen auf, denen sich die Forscher in Zukunft widmen werden. Sie wollen klären, wie alternatives Splicing bei Sarkomer-Proteinen zu einem gesunden oder kranken Muskel führt. [HS]

Originalpublikation:
M. Spletter, C. Barz, A. Yeroslaviz, C. Schönbauer, I. Ferreira, M. Sarov, D. Gerlach, A. Stark, B. Habermann and F. Schnorrer: The RNA binding protein Arrest (Bruno) regulates alternative splicing to enable myofibril maturation in Drosophila flight muscle. EMBO Reports, December 22, 2014. DOI: 10.15252/embr.201439791

Kontakt:
Dr. Frank Schnorrer
Muskeldynamik
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: schnorrer@biochem.mpg.de
www.biochem.mpg.de/schnorrer

Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
www.biochem.mpg.de/news

Weitere Informationen:

http://www.biochem.mpg.de/schnorrer - Webseite der Forschungsgruppe Muskeldynamik (Frank Schnorrer)
http://www.biochem.mpg.de/news - Weitere Pressemitteilungen des MPI für Biochemie

Anja Konschak | Max-Planck-Institut für Biochemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie