Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Muskelbildung – auf die richtigen Verbindungen kommt es an

23.12.2014

Unser Körper besitzt verschiedene Arten von Muskeln. Während der Herzmuskel Blut durch die Gefäße pumpt, können wir mit Hilfe der Skelettmuskeln Gewichte stemmen oder einen Marathon laufen.

Durch einen speziell angepassten Bauplan sind die einzelnen Muskeln optimal für ihre jeweilige Funktion gerüstet. Diese Anpassungen kommen durch verschiedene Varianten der Protein-Bausteine zustande, die die kontraktilen Muskelmaschinen bilden: die Sarkomere.


Die Zellkerne (rot) der Flugmuskeln von Drosophila benötigen den Splicing Regulator Arrest, um die richtigen Bausteine für die kontraktilen Strukturen (die Sarkomere, grün) bilden zu können.

Bild: Frank Schnorrer / Copyright: MPI für Biochemie

Forscher am Max-Planck-Institut für Biochemie haben nun anhand von Flugmuskeln der Taufliege Drosophila ein wichtiges Prinzip entdeckt, das erklärt, wie die unterschiedlichen Proteinvarianten in den entsprechenden Muskeln produziert werden.

Jeder Muskel besteht aus Hunderten von kontraktilen Minimaschinen, den sogenannten Sarkomeren. Je nach Art und Eigenschaft des Muskels unterscheiden sich diese Maschinen in ihrem molekularen Aufbau. Diese verschiedenen Varianten der Sarkomere wirken sich auf die Kontraktionsgeschwindigkeit oder die Kraft der Muskeln aus.

Die Flugmuskeln der Taufliege Drosophila etwa müssen extrem schnell kontrahieren (200 Mal pro Sekunde), um ihnen das Fliegen zu ermöglichen. Wissenschaftler um Frank Schnorrer haben dieses Fliegenmodell untersucht, um zu klären, wie die unterschiedlichen Kompositionen der Sarkomere zustande kommen.

„Wir konnten zunächst zeigen, dass in der schnellen Flugmuskulatur mehr als 700 Proteine in einer anderen Variante vorlagen als in der langsamen Beinmuskulatur“, berichtet Maria Spletter, die Erstautorin der Studie. „Die verschiedenen Proteinvarianten bilden also Sarkomere mit unterschiedlichen mechanischen Eigenschaften.“ Was den Wissenschaftlern besonders auffiel: oft gingen die unterschiedlichen Proteinvarianten auf das gleiche Gen zurück.

Die Gene beinhalten die Baupläne für Proteine. Vereinfacht gesagt, wurde also der Bauplan für das spätere Protein unterschiedlich interpretiert. Dies geschah durch einen Mechanismus, den Forscher als „alternatives Splicing“ bezeichnen: Gene bestehen aus mehreren kleinen Einheiten, den Exons, die von der Zelle abgeschrieben, zusammengeklebt und dann in ein Protein übersetzt werden. Alternatives Splicing bezeichnet das unterschiedliche Zusammenkleben von mehreren Exons und führt so zu verschiedenen Proteinvariationen des gleichen Gens.

Bis zum Zerreißen gespannt

Doch woher weiß der Flugmuskel, welche Varianten der Proteine er nun benötigt? In weiteren Untersuchungen identifizierten die Wissenschaftler ein Protein mit dem Namen „Arrest“, was die richtigen Exons erkennt und aneinanderklebt. „Wenn die Funktion von Arrest gestört ist“, so Spletter, „werden im Flugmuskel die falschen Exon-Kombinationen zusammengeführt und so Proteinvarianten gebildet, die sonst nur in Beinmuskeln vorkommen.“ Die Folgen sind dramatisch: die Fliegen können nicht mehr fliegen und schlimmer noch, ihre Flugmuskeln werden durch eine zu starke Kontraktion sogar in Stücke gerissen.

Und auch für uns Menschen könnten diese Ergebnisse von Bedeutung sein. „Arrest-verwandte Proteine kommen auch in den Muskeln von Säugetieren vor, daher könnte dieser Mechanismus auch beim Menschen eine Rolle spielen“ schlägt Schnorrer die Brücke. Die Entdeckung des neuen Mechanismus‘ wirft also weitere Fragen auf, denen sich die Forscher in Zukunft widmen werden. Sie wollen klären, wie alternatives Splicing bei Sarkomer-Proteinen zu einem gesunden oder kranken Muskel führt. [HS]

Originalpublikation:
M. Spletter, C. Barz, A. Yeroslaviz, C. Schönbauer, I. Ferreira, M. Sarov, D. Gerlach, A. Stark, B. Habermann and F. Schnorrer: The RNA binding protein Arrest (Bruno) regulates alternative splicing to enable myofibril maturation in Drosophila flight muscle. EMBO Reports, December 22, 2014. DOI: 10.15252/embr.201439791

Kontakt:
Dr. Frank Schnorrer
Muskeldynamik
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: schnorrer@biochem.mpg.de
www.biochem.mpg.de/schnorrer

Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
www.biochem.mpg.de/news

Weitere Informationen:

http://www.biochem.mpg.de/schnorrer - Webseite der Forschungsgruppe Muskeldynamik (Frank Schnorrer)
http://www.biochem.mpg.de/news - Weitere Pressemitteilungen des MPI für Biochemie

Anja Konschak | Max-Planck-Institut für Biochemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher beschreiben neuartigen Antikörper als möglichen Wirkstoff gegen Alzheimer
22.08.2017 | Martin-Luther-Universität Halle-Wittenberg

nachricht Virus mit Eierschale
22.08.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen