Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Musizieren verändert die Verarbeitung mehrfacher Sinnesreize im Gehirn

24.11.2011
Durch Fingerübungen am Klavier werden Schaltkreise neu verknüpft

Klavierspieler entwickeln über die Jahre ein besonders präzises Gespür dafür, wie die Tastenbewegungen und Töne zeitlich zusammenhängen. Ob aber Lippenbewegungen und Sprache synchron zueinander sind, können sie nicht besser beurteilen als Nichtmusiker.


Ausschnitt der audiovisuellen Stimuli aus den Experimenten: Sprache (links) und Musik (rechts)
Abbildung: HweeLing Lee/MPI für biologische Kybernetik.

Das haben Forscherinnen vom Max-Planck-Institut für biologische Kybernetik in Tübingen bei einer Vergleichsstudie mit Musikern und Nichtmusikern zur gleichzeitigen Reizverarbeitung aus mehreren Sinnen im Gehirn festgestellt. Sie setzten bei ihren Experimenten auch die funktionelle Magnetresonanztomografie zur Darstellung der jeweils aktiven Gehirnbereiche ein.

Danach ruft bei Pianisten die Wahrnehmung asynchroner Musik und Handbewegungen verstärkte Fehlersignale in einem Schaltkreis zwischen Kleinhirn, prämotorischen und assoziativen Hirnarealen aus, der sich durch das eigene Spiel besonders ausbildet. Die Studie zeigt, dass unsere sensomotorische Erfahrung prägt, wie das Gehirn Signale von unterschiedlichen Sinnen in der Wahrnehmung zeitlich verknüpft.

In einer Welt voller Reize, die alle Sinne betreffen, muss das menschliche Gehirn ständig die Eindrücke sinnvoll in der Wahrnehmung verknüpfen. Dabei lernt man durch Erfahrung, dass etwa in einer lebhaften Kneipenatmosphäre synchrone Ereignisse wie die Lippenbewegungen einer bestimmten Person und das Hören einer bestimmten Stimme auch zusammengehören. HweeLing Lee und die Arbeitsgruppenleiterin Uta Noppeney vom Max-Planck-Institut für biologische Kybernetik in Tübingen erforschen, wie das Gehirn Reize mehrerer Sinne integriert und wie sich durch Lernen die Verschaltungen ändern. In ihrer neuen Studie haben sie verglichen, wie gut 18 Amateurpianisten gegenüber 19 Nichtmusikern die zeitliche Übereinstimmung einerseits von Fingerbewegungen auf der Tastatur und einer Melodie beziehungsweise andererseits von Lippenbewegungen und gesprochenen Sätzen wahrnehmen können.

„Für diese Studie haben wir uns zunutze gemacht, dass die Pianisten seit vielen Jahren speziell diese Tätigkeit trainieren, bei der mehrere Sinnesreize, nämlich Seh- und Hörinformationen, Bewegung und die Berührung der Klaviertasten verbunden werden müssen“, erklärt Uta Noppeney.

Die Finger- beziehungsweise Mundbewegungen wurden im Versuch in Abstufungen bis zu 360 Millisekunden verfrüht bis verzögert gegenüber dem Gehörten präsentiert. Die Studienteilnehmer sollten auf Nachfrage jeweils angeben, ob die Ereignisse synchron oder asynchron zueinander sind. Mit dem gleichen Film- und Tonmaterial und den gleichen Studienteilnehmern wurden die Experimente mithilfe der funktionellen Magnetresonanztomografie wiederholt. Dabei bleibt die Person passiv und das Gerät misst, welche Bereiche des Gehirns bei der automatischen Wahrnehmung von synchronen und asynchronen Signalen im Experiment aktiv werden.

Die Experimente ergaben, dass Pianisten deutlich genauer als Nichtmusiker merkten, ob die Fingerbewegungen am Klavier und die gehörten Töne in der zeitlichen Abfolge übereinstimmten oder nicht. „Bei ihnen ist das Fenster der zeitlichen Integration der Reize deutlich schmaler als bei ungeübten Personen“, sagt HweeLing Lee. Allerdings zeigten sich diese Unterschiede bei den Experimenten mit gesprochenen Sätzen und Lippenbewegungen nicht – hier schnitten beide Gruppen ähnlich ab. Asynchronizität bei Sprache und Musik aktiviert im Gehirn prinzipiell die gleichen Bereiche. Doch die funktionelle Magnetresonanztomografie zeigte, dass asynchrone Musik im Versuch bei den Klavierspielern gegenüber den Nichtmusikern ein verstärktes Signal in einem Schaltkreis zwischen dem linken Kleinhirn, einer prämotorischen und assoziativen Region der Großhirnrinde hervorruft.

„Die Reizverarbeitung im Gehirn der Klavierspieler deutet auf einen kontextspezifischen Mechanismus hin: Durch das Üben am Klavier wird im Schaltkreis von Kleinhirn und prämotorischer Großhirnrinde ein Vorwärtsmodell programmiert, das der Person sehr viel präzisere Vorhersagen über den korrekten zeitlichen Ablauf der Seh- und Hörsignale ermöglicht“, erklärt Uta Noppeney. Darein würden auch die Berührungs- und Bewegungserfahrungen aus dem eigenen Spiel integriert. „Ein asynchroner Reiz meldet einen Fehler bei der Vorhersage.“ Die Forscherinnen sehen dies als wichtigen Hinweis, wie das Gehirn allgemein plastisch auf sensomotorische Erfahrungen reagieren kann. Ob Pianisten bei der Beurteilung von Geigenmusik ähnlich gut abschneiden würden oder ob intensiveres Musizieren Einfluss auf die Sprachverarbeitung im Gehirn hat, sind ausstehende Fragen. „Der nächste Untersuchungsschritt bei der Verarbeitung mehrfacher Sinnesreize im Gehirn muss sein, dass wir die Studienteilnehmer selbst gezielt trainieren, um die Effekte genauer zu untersuchen“, sagt Uta Noppeney.

Originalpublikation:
HweeLing Lee, Uta Noppeney: Long-term music training tunes how the brain temporally binds signals from multiple senses. PNAS, doi: 10.1073/pnas.1115267108
Ansprechpartnerinnen:
Uta Noppeney
E-Mail: uta.noppeney@tuebingen.mpg.de
HweeLing Lee
Tel.: 07071 601- 1786
E-Mail: hwee-ling.lee@tuebingen.mpg.de

Dagmar Sigurdardottir | Max-Planck-Institut
Weitere Informationen:
http://www.tuebingen.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen