Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Muschelkleber für DNA-Chips

05.01.2011
Einfache universelle DNA-Immobilisierung auf Oberflächen mit künstlichem Muschel-Polymer

Muscheln sind wahre Klebekünstler. Ob am Holz eines Stegs, am Metall eines Schiffrumpfes, an Steinen oder an einem Artgenossen, sie haften überall. Forschern um Philip B. Messersmith von der Northwestern University (Evanston, IL/USA) ist es nun gelungen, einen der „Universal-Klebstoffe“ von Muscheln nachzuahmen. Wie die Wissenschaftler in der Zeitschrift Angewandte Chemie berichten, gelang es ihnen, mit dem künstlichen „Muschelkleber“ DNA-Moleküle auf diversen Substraten zu fixieren. Diese neue, einfache Methode ist ausgesprochen interessant, beispielsweise zur Herstellung von DNA-Chips für Diagnostik und Forschung.

Moderne Analyse-Strategien zur Detektion und Analyse von Biomolekülen sind oft auf einfache, robuste und kostengünstige Methoden angewiesen, mit denen DNA, Proteine und andere Biomoleküle auf Oberflächen immobilisiert werden. Bei so genannten DNA-Mikroarry-Methoden etwa sind verschiedene DNA-Sonden auf einem Chip angeordnet. Selektiv fischen sie verschiedene Ziel-DNA-Moleküle aus der Vielfalt der in einer Probe enthaltenen DNA heraus. Der Ort, an dem eine Ziel-DNA angedockt hat, identifiziert diese, da dokumentiert ist, an welcher Stelle des Chips welche Sonde fixiert ist.

„Bisherige Verankerungsstrategien wurden meist spezifisch für ein bestimmtes Substrat entwickelt,“ berichtet Messersmith, „für andere Substrate sind sie dann ineffektiv.“ Messersmith und seine Kollegen haben nun eine universelle Methode entwickelt. Sie wurden dabei von Muscheln inspiriert, die so gut wie auf jedem beliebigen Material haften können. Inzwischen wurden Biopolymere identifiziert, die Muscheln ihre außergewöhnlichen Haftungseigenschaften verleihen. Diese Polymere sind reich an Catechol- und Aminogruppen. „Wir haben ein künstliches Catecholamin-Polymer synthetisiert, das diese Muschel-Proteine in ihrer Chemie nachahmt,“ so Messersmith.

Das neue Verfahren ist denkbar simpel: Einfach den gewünschten Träger über Nacht in eine Lösung des Catecholamin-Polymers legen. Das Polymer haftet als dünne Schicht auf allen für DNA-Arrays üblichen Substraten wie Glas sowie anderen, weniger verbreiteten Substraten wie Gold, Platin, Oxiden, Halbleitern und diversen Polymersubstraten. Die Beschichtung bindet dann problemlos DNA-Moleküle, ohne deren biologische Aktivität zu beeinflussen. So lassen sich Mikromuster aus DNA erzeugen (DNA-Spotting), wie sie etwa für DNA-Chips benötigt werden.

Das Erfolgsgeheimnis des Catecholamin-Polymers: Es enthält spezielle Atomgruppierungen, die auf besonders vielfältige Weise über verschiedenste Mechanismen an die unterschiedlichsten Substratmaterialien binden können. Ziel-DNA-Moleküle aus einer Probe binden dagegen ausschließlich an die jeweiligen spezifischen DNA-Sonden, eine Vorbehandlung zum Blockieren einer unspezifischen Bindung an das Substrat ist nicht notwendig. Messersmith: „Die neue Beschichtungsstrategie könnte DNA-Mikroarray-Techniken wesentlich vereinfachen.“

Angewandte Chemie: Presseinfo 45/2010

Autor: Phillip B. Messersmith, Northwestern University, Evanston (USA), http://biomaterials.bme.northwestern.edu/people.asp

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201005001

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de
http://biomaterials.bme.northwestern.edu/people.asp

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics