Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Muschelfasern für die Bodenhaftung

05.03.2010
Forscher am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam haben gemeinsam mit Kollegen aus Santa Barbara und Chicago herausgefunden, wie Muscheln ihre Haftfasern vor Abrieb schützen.

Dafür verantwortlich ist eine Schutzschicht, die trotz ihrer Härte dennoch enorm dehnbar bleibt. Die Forscher entdeckten, dass die Proteinmatrix in dieser Schicht durch einzelne Eisenatome quervernetzt und damit verstärkt wird. Eine lokale Anhäufung dieser Vernetzungen bildet harte Kügelchen innerhalb der weichen und dehnbaren Schutzschicht. Dieses spezielle Design könnte neuartige abriebresistente, aber dehnbare Beschichtungen inspirieren. (Science, 4. März 2010)

Muscheln haben sich in faszinierender Weise an eine besondere Form von Leben und Ernährung angepasst. Meist sind sie an Steinen oder Felsen festgeklebt, wo sie Nahrung aus dem Wasser filtern. Sie gedeihen gerade an den felsigen Küstenregionen und das trotz der extremen Umweltbedingungen. Einen großen Anteil daran hat die evolutionäre Entwicklung der Byssus, auch Muschelseide genannt.

Meermuscheln benutzen Muschelseide - ein Bündel von stabilen und dehnbaren Fasern - um sich an die felsigen Küstenstreifen anzuheften, an die die Wellen branden. Die dehnbaren Fasern werden von einer dünnen, harten Oberhaut mit einem biologischen Polymer bedeckt, die an Sandpapier erinnert. Obwohl so hart wie etwa Epoxid, ist diese knubblige Oberhaut dennoch erstaunlich strapazierbar: Sogar bei hundertprozentiger Dehnung reißt oder bricht sie nicht. Die einzelnen Stränge der Byssus werden von der Muschel in einem Prozess, der dem Spritzgussverfahren ähnelt, gebildet. Sie sind dafür verantwortlich, dass sich die ungeheure Energie der Brandungswellen verteilt, und schützen die Muschel vor Abriebschäden durch Gestein und Geröll in den Wassermassen.

Außergewöhnliche Kombination von Härte und Dehnbarkeit

"Schutzbeschichtungen sind extrem wichtig für die Haltbarkeit von Materialien und Geräten. Betrachtet man die Kombination von Härte und Dehnbarkeit, so gibt es nur wenige Polymere oder Zusammensetzungen, die diese Materialeigenschaften vereinen. Zu verstehen, wie ein flexibles Substrat vor äußeren Einflüssen geschützt werden kann, wird heute immer wichtiger", erklärt Matthew Harrington, Humboldt-Stipendiat am Max-Planck-Institut für Kolloid- und Grenzflächenforschung. Die Oberhaut der "Muschelseide" hat eine sehr knubblige Anmutung. Sie entsteht durch weniger als ein Tausendstel Millimeter große Körnchen (Granula), die in eine deutlich weichere Matrix eingebettet sind. Wird die Matrix gedehnt, bilden sich winzige Hohlräume, die womöglich größere Risse und damit einen generellen Materialdefekt verhindern. Dabei spielen die hohe Konzentration von Eisen-Ionen und die ungewöhnliche Veränderung der Aminosäure Tyrosin, gemeinhin bekannt als L-DOPA, eine entscheidende Rolle.

L-DOPA findet man in hohen Konzentrationen in der Schutzschicht dieser Fasern, als Bestandteils des Muschelfußproteins (mfp-1). L-DOPA verbindet sich leicht mit Übergangsmetall-Ionen wie Eisen und unterscheidet sich dadurch von typischen Aminosäuren. Admir Masic, beteiligter Wissenschaftler erklärt: "Verbinden sich zwei bis drei L-DOPA mit nur einem einzigen Eisen-Ion, bilden sie einen unglaublich stabilen Komplex, der für die Vernetzung von Strukturproteinen eingesetzt werden kann." Diese Metallproteinkomplexe haben eine hohe Bruchfestigkeit und sind beinahe halb so stabil wie kovalente Bindungen). Aber im Gegensatz zu kovalenten Bindungen können diese Brüche rückgängig gemacht werden. Das macht sie ideal für die Bildung von Vernetzungen, die bei Belastung notfalls aufbrechen, um das Material vor größeren Beschädigungen zu schützen.

Muschelhaut wird durch DOPA-Eisen-Komplexe stabilisiert

Die Forscher benutzten die konfokale Raman-Spektroskopie, um die chemische Zusammensetzung der Oberhaut zu erforschen. Darunter versteht man eine spektroskopische Untersuchung der inelastischen Streuung von Licht an Molekülen oder Festkörpern, die unter anderem für die Untersuchung von Materialeigenschaften eingesetzt wird. Mit dieser Methode konnten die Wissenschaftler den ersten direkten Beweis liefern, dass die Haut aus einem polymeren Proteingerüst besteht, welches durch DOPA-Eisen-Komplexe stabilisiert wird. Darüber hinaus entdeckten sie, dass die Verteilung von DOPA-Eisen-Komplexen in den Bereichen niedrig ist, in denen es granuläre Einschlüsse gibt, bzw. dort hoch ist, wo diese nicht existieren. Zusammen mit früheren mechanischen Beobachtungen lassen diese Ergebnisse vermuten, dass die eng vernetzten Granulate als stabilisierende Einschlüsse fungieren, während die weniger vernetzte Matrix jederzeit aufgebrochen werden kann und sich somit dehnen lässt.

"Die Natur hat eine elegante Methode für ein Problem entwickelt, mit der Ingenieure noch immer kämpfen: Sie hat Eigenschaften, die einen Abrieb verhindern und dennoch eine hohe Dehnbarkeit gewährleisten, in einem Material vereinigt", sagt Peter Fratzl, Direktor der Abteilung Biomaterialien am Max-Planck-Institut für Kolloid- und Grenzflächenforschung und ebenfalls an dieser Forschung beteiligt. Offensichtlich erreicht die Schutzschicht der Muschelseide dies durch eine sorgfältige, maßgeschneiderte Verbindung von Metall und Protein. "Es ist denkbar, dass ähnliche Strategien auf technisch entwickelte Polymerschutzschichten angewendet werden können."

Iron-clad fibers: a metal-based biological strategy for hard flexible coatings
Matthew J. Harrington, Admir Masic, Niels Holten-Andersen, J. Herbert Waite,
and Peter Fratzl
Science, 4. März 2010
Weitere Informationen erhalten Sie von:
Dr. Matthew Harrington
Max-Planck-Institut für Kolloid- und Grenzflächenforschung
Wissenschaftspark Potsdam-Golm, 14424 Potsdam
Tel.: 0331/567-9429
Fax: 0331/567-9402
Email: Matt.Harrington@mpikg.mpg.de
Katja Schulze
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Kolloid- und Grenzflächenforschung
Wissenschaftspark Potsdam-Golm, 14424 Potsdam
Tel.: 0331/567-9203
Fax: 0331/567-9202
Email: katja.schulze@mpikg.mpg.de

Dr. Harald Rösch | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpikg.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden neue Ansätze gegen Wirkstoffresistenzen in der Tumortherapie
15.12.2017 | Universität Leipzig

nachricht Moos verdoppelte mehrmals sein Genom
15.12.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik