Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Multiplexing im Gehirn: unabhängige Kodierung von Orientierung und Bewegung erstmals gezeigt

24.03.2011
Überlagerte Aktivitätsmuster übermitteln unterschiedliche Informationen beim Sehen

Fährt mein Zug an oder der am Gleis gegenüber? Welcher Zug sich in Bewegung setzt, erkennt man oft erst dann, wenn man beim Blick aus dem Fenster Relativbewegungen von Konturen an verschiedenen Orten erfasst hat.


Das Gehirn kodiert gleichzeitig Orientierung und Bewegung eines Objekts. Ein horizontales Streifenmuster wurde auf einem Bildschirm gezeigt (rechts skizziert), und dann nach unten bewegt. Von links nach rechts: Blick auf die Gehirnoberfläche und ein 20 Millisekunden Kamera-Schnappschuss aktiver Bereiche. Dunkel gefärbt (rot umrandet) sind Regionen, in denen Nervenzellen vermehrt aktiv sind, die horizontal orientierte Kanten kodieren. Diesem Muster überlagert sind Aktivitätswellen (rot markiert den Wellenkamm der Aktivierung, blau niedrige Amplitude), die sich in Richtung und Geschwindigkeit des Gitters bewegten. Damit wurde erstmalig sichtbar gemacht, wie Informationen im Gehirn über Orientierung eines Objekts und dessen Bewegung gleichzeitig verarbeitet und getrennt weitergeleitet werden. Jancke/RUB

Doch wie werden diese unterschiedlichen Informationen gleichzeitig durch dasselbe Netzwerk aus Millionen aktivierter Nervenzellen im Gehirn geschleust? „Nervenzellen synchronisieren sich mit unterschiedlichen Partnern in verschiedenen Frequenzen“, erklärt Dr. Dirk Jancke, Neurowissenschaftler an der Ruhr-Universität in Bochum.

So entstehen sich überlagernde Aktivitätsmuster, die jeweils Richtung, Geschwindigkeit und Orientierung von Objekten abbilden. Dieses „Gehirn-Multiplexing“ zeigen Bochumer Wissenschaftler zusammen mit Kollegen der Universität Osnabrück mit Hilfe eines neuen bildgebenden Verfahrens, des „Real-time Optical Imagings“. Ihre Ergebnisse sind im Journal „NeuroImage“ veröffentlicht.

Optische Messung von Gehirnaktivität in Echtzeit

Das optische Verfahren nutzt die Eigenschaften von bestimmten fluoreszierenden Farbstoffen: Sie lagern sich in die Membranen von Nervenzellen ein und ändern ihre Leuchtintensität immer dann, wenn die Zellen elektrische Impulse erhalten oder aussenden. Ein hochauflösendes Kamerasystem sorgt dafür, dass so die Aktivitäten von Nervenzellen über mehrere Quadratmillimeter große Oberflächenbereiche des Gehirns erfasst werden können.

Bewegung von Objektkonturen erstmalig im Gehirn sichtbar gemacht

Als visuellen Reiz setzten die Wissenschaftler einfache, schwarz-weiße Streifenmuster ein, die sich mit konstanter Geschwindigkeit über einen Monitor bewegten. Solche Gitterreize werden seit mehr als 50 Jahren für die Erforschung des Sehsystems genutzt und gehören zum Standardrepertoire bei der medizinischen Diagnose visueller Erkrankungen. Dennoch wurden Gehirnsignale, die gleichzeitig die Orientierung des Gitterreizes und dessen räumliche Verschiebung darstellen, bis heute nicht gefunden. Diese sehr kleinen Signale konnten die Forscher zum ersten Mal nachweisen. Um sie schließlich sichtbar machen zu können, waren weitere, rechenaufwendige mathematische Analyseschritte notwendig.

Gehirnbereiche wählen „die Frequenz“

Optical Imaging zeigt, wie die Orientierung von Objekten durch spezifische Aktivitätsmuster – so genannte Karten – in der primären Sehrinde des Gehirns abgebildet ist. In diesen Karten repräsentieren lokale Gruppen von Nervenzellen bestimmte Kantenorientierungen, beispielsweise waagerecht oder horizontal. So entsteht eine Art Punktemuster auf der Gehirnoberfläche, dessen Anordnung die Orientierung des gezeigten Gitterreizes widerspiegelt. „Durch unser neues Imaging-Verfahren sehen wir nun zusätzlich Aktivitätswellen, die sich als Streifenmuster über die Oberfläche des Gehirns bewegen. Das heißt, Bewegungsrichtung, Geschwindigkeit und Orientierungskarten sind getrennt repräsentiert. Dies hilft Mehrdeutigkeiten aufzulösen, wie sie häufig in natürlichen Bildsequenzen auftreten“, so Dr. Jancke. Die entstehenden raum-zeitlich oszillierenden Muster können dann individuell an nachfolgende Gehirngebiete übertragen und interpretiert werden. Dr. Jancke nutzt zur Veranschaulichung einen Vergleich: „Radios empfangen gleichzeitig einen permanenten Strom an Informationen über Radiowellen. Um nun einen bestimmten Sender hören zu können, wählen wir gezielt dessen Frequenz. So könnte zum Beispiel ein nachfolgendes Gehirnareal die Orientierung eines Objektes analysieren, während andere gleichzeitig dessen Bewegungsrichtung und Geschwindigkeit verarbeiten.“

Komplexere Reize einsetzen

Die Wissenschaftler erhoffen sich für die Zukunft weitere Erkenntnisse über die parallele Echtzeitverarbeitung im Gehirn durch die Verwendung komplexerer Sehreize. Denn offenbar werden natürliche Bilder, denen wir täglich ausgesetzt sind, effizient verarbeitet. „Es bleibt spannend herauszufinden, wie unser Gehirn aus diesen komplexen Informationen stabile Sinneseindrücke in jedem Augenblick erzeugt“, so Jancke.

Titelaufnahme

Onat S, Nortmann N, Rekauzke S, König P, Jancke D (2011). Independent encoding of grating motion across stationary feature maps in primary visual cortex visualized with voltage-sensitive dye imaging. Neuroimage 55: 1763-1770. http://dx.doi.org/10.1016/j.neuroimage.2011.01.004

Weitere Informationen

Dr. Dirk Jancke, Real-time Optical Imaging Group, Institut für Neuroinformatik NB 2/27, Ruhr-Universität, 44780 Bochum, Tel: 0234 32 27845, E-Mail: jancke@neurobiologie.rub.de, http://homepage.ruhr-uni-bochum.de/Dirk.Jancke/

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/
http://homepage.ruhr-uni-bochum.de/Dirk.Jancke/brain_multiplexing.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise